An Energy Dissipative Spatial Discretization for the Regularized Compressible Navier-Stokes-Cahn-Hilliard System of Equations (vol 25, pg 110, 2020)

被引:0
|
作者
Balashov, Vladislav [1 ]
Zlotnik, Alexander [1 ,2 ]
机构
[1] Keldysh Inst Appl Math, Miusskaya Sqr 4, Moscow 125047, Russia
[2] Higher Sch Econ Univ, Pokrovskii Bd 11, Moscow 109028, Russia
关键词
regularized viscous compressible Navier-Stokes-Cahn-Hilliard equations; finite-difference discretization in space; equilibrium solutions;
D O I
10.3846/mma.2021.14527
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We correct the proof of Theorem 2 in the mentioned paper concerning finite-difference equilibrium solutions.
引用
收藏
页码:337 / 338
页数:2
相关论文
共 21 条
  • [1] An Energy Dissipative Spatial Discretization for the Regularized Compressible Navier-Stokes-Cahn-Hilliard System of Equations
    Balashov, Vladislav
    Zlotnik, Alexander
    MATHEMATICAL MODELLING AND ANALYSIS, 2020, 25 (01) : 110 - 129
  • [2] Thermodynamically consistent spatial discretization of the one-dimensional regularized system of the Navier-Stokes-Cahn-Hilliard equations
    Balashov, V. A.
    Savenkov, E. B.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372 (372)
  • [3] On a New Spatial Discretization for a Regularized 3D Compressible Isothermal Navier-Stokes-Cahn-Hilliard System of Equations with Boundary Conditions
    Balashov, Vladislav
    Zlotnik, Alexander
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 86 (03)
  • [4] Navier-Stokes-Cahn-Hilliard system of equations
    Dlotko, Tomasz
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (11)
  • [5] The compressible Navier-Stokes-Cahn-Hilliard equations with dynamic boundary conditions
    Cherfils, Laurence
    Feireisl, Eduard
    Michalek, Martin
    Miranville, Alain
    Petcu, Madalina
    Prazak, Dalibor
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (14): : 2557 - 2584
  • [6] NUMERICAL STUDY OF COMPRESSIBLE NAVIER-STOKES-CAHN-HILLIARD SYSTEM
    He, Qiaolin
    Shi, Xiaoding
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (02) : 571 - 591
  • [7] THE NAVIER-STOKES-CAHN-HILLIARD EQUATIONS FOR MILDLY COMPRESSIBLE BINARY FLUID MIXTURES
    Giorgini, Andrea
    Temam, Roger
    Xuan-Truong Vu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (01): : 337 - 366
  • [8] On a New Spatial Discretization for a Regularized 3D Compressible Isothermal Navier–Stokes–Cahn–Hilliard System of Equations with Boundary Conditions
    Vladislav Balashov
    Alexander Zlotnik
    Journal of Scientific Computing, 2021, 86
  • [9] Mixing rules and the Navier-Stokes-Cahn-Hilliard equations for compressible heat-conductive fluids
    Matthias Kotschote
    Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 457 - 471
  • [10] Mixing rules and the Navier-Stokes-Cahn-Hilliard equations for compressible heat-conductive fluids
    Kotschote, Matthias
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (02): : 457 - 471