Second-Order Structured Deformations: Relaxation, Integral Representation and Applications

被引:15
|
作者
Barroso, Ana Cristina [1 ,2 ]
Matias, Jose [3 ]
Morandotti, Marco [4 ]
Owen, David R. [5 ]
机构
[1] Univ Lisbon, Fac Ciencias, Dept Matemat, Edificio C6 Piso 1, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, CMAF CIO, Edificio C6 Piso 1, P-1749016 Lisbon, Portugal
[3] Inst Super Tecn, Dept Matemat, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
[4] Tech Univ Munich, Fak Math, Boltzmannstr 3, D-85748 Garching, Germany
[5] Carnegie Mellon Univ, Dept Math Sci, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
基金
欧洲研究理事会;
关键词
STABLE DISARRANGEMENT PHASES; ENERGY; MODEL; TRANSFORMATIONS; INTERFACES; THEOREM; BULK;
D O I
10.1007/s00205-017-1120-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Second-order structured deformations of continua provide an extension of the multiscale geometry of first-order structured deformations by taking into account the effects of submacroscopic bending and curving. We derive here an integral representation for a relaxed energy functional in the setting of second-order structured deformations. Our derivation covers inhomogeneous initial energy densities (i.e., with explicit dependence on the position); finally, we provide explicit formulas for bulk relaxed energies as well as anticipated applications.
引用
收藏
页码:1025 / 1072
页数:48
相关论文
共 50 条
  • [21] Integral Representations for Second-Order Elliptic Systems in the Plane
    Soldatov, A. P.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (01) : 118 - 137
  • [22] Integral Representations for Second-Order Elliptic Systems in the Plane
    A. P. Soldatov
    [J]. Computational Mathematics and Mathematical Physics, 2024, 64 : 118 - 137
  • [23] Integral Representations for a Second-Order System with a Supersingular Point
    A. B. Rasulov
    [J]. Differential Equations, 2004, 40 : 1200 - 1204
  • [24] CLOSED FORM FOR SECOND-ORDER BORN LINESHIFT INTEGRAL
    SHARMA, RD
    PASCIAK, J
    [J]. CHEMICAL PHYSICS LETTERS, 1972, 16 (01) : 45 - &
  • [25] Role of the second-order memory function on the dielectric relaxation
    Díaz-Calleja, R
    Sanchis, MJ
    del Castillo, LF
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (20): : 9057 - 9061
  • [27] SECOND-ORDER MODEL FOR DIPOLAR DIELECTRIC-RELAXATION
    GOULPEAU, L
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1973, 17 (02): : 583 - 588
  • [28] Second-Order Cone Representation for Convex Sets in the Plane
    Scheiderer, Claus
    [J]. SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2021, 5 (01): : 114 - 139
  • [29] Waveform relaxation of nonlinear second-order differential equations
    Jiang, YL
    Chen, RMM
    Wing, O
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (11): : 1344 - 1347
  • [30] Instabilities in generic second-order traffic models with relaxation
    Goatin, Paola
    Rizzo, Alessandra
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):