PT-symmetric quantum field theory

被引:3
|
作者
Bender, C. M. [1 ]
机构
[1] Washington Univ, Phys Dept, St Louis, MO 63130 USA
关键词
D O I
10.1088/1742-6596/1586/1/012004
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
PT-symmetric quantum theory began with an analysis of the strange-looking non-Hermitian Hamiltonian H = p(2) + x(2) (ix)(epsilon). This Hamiltonian is PT symmetric and the eigenvalues Hamiltonian are discrete, real, and positive when epsilon >= 0. In this talk we describe the properties of the corresponding quantum-field-theoretic Hamiltonian H = 1/2 (del phi)(2) + 1/2 phi(2) (i phi)(epsilon) in D-dimensional spacetime, where phi is a pseudoscalar field. We show how to calculate all of the Green's functions as series in powers of epsilon directly from the Euclidean partition function. We derive exact finite expressions for the vacuum energy density, the renormalized mass, and the connected n-point Green's functions for all n 0 <= D < 2. For D >= 2 the one-point Green's function and the renormalized mass become infinite, but perturbative renormalization can be performed. The beautiful spectral properties of PT-symmetric quantum mechanics appear to persist in PT-symmetric quantum field theory.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] An algebraic PT-symmetric quantum theory with a maximal mass
    V. N. Rodionov
    G. A. Kravtsova
    Physics of Particles and Nuclei, 2016, 47 : 135 - 156
  • [22] Effective potential for PT-symmetric quantum field theories
    Bender, CM
    Jones, HF
    FOUNDATIONS OF PHYSICS, 2000, 30 (03) : 393 - 411
  • [23] PT-symmetric quantum field theories and the Langevin equation
    Bernard, C
    Savage, VM
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (01) : 109 - 118
  • [24] Photonic realization of PT-symmetric quantum field theories
    Longhi, Stefano
    Della Valle, Giuseppe
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [25] Instantons, analytic continuation, and PT-symmetric field theory
    Lawrence, Scott
    Weller, Ryan
    Peterson, Christian
    Romatschke, Paul
    PHYSICAL REVIEW D, 2023, 108 (08)
  • [26] PT-symmetric quantum mechanics
    Bender, CM
    Boettcher, S
    Meisinger, PN
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2201 - 2229
  • [27] PT-symmetric quantum electrodynamics
    Bender, CM
    Cavero-Pelaez, I
    Milton, KA
    Shajesh, KV
    PHYSICS LETTERS B, 2005, 613 (1-2) : 97 - 104
  • [28] PT-symmetric quantum toboggans
    Znojil, M
    PHYSICS LETTERS A, 2005, 342 (1-2) : 36 - 47
  • [29] Generation of families of spectra in PT-symmetric quantum mechanics and scalar bosonic field theory
    Schmidt, Steffen
    Klevansky, S. P.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1989):
  • [30] Non-Hermitian PT-Symmetric Relativistic Quantum Theory in an Intensive Magnetic Field
    Rodionov, V. N.
    NON-HERMITIAN HAMILTONIANS IN QUANTUM PHYSICS, 2016, 184 : 357 - 369