Demonstration of x-ray fluorescence imaging of a high-energy-density plasma

被引:7
|
作者
MacDonald, M. J. [1 ,2 ]
Keiter, P. A. [1 ]
Montgomery, D. S. [3 ]
Biener, M. M. [4 ]
Fein, J. R. [1 ]
Fournier, K. B. [4 ]
Gamboa, E. J. [1 ,2 ]
Klein, S. R. [1 ]
Kuranz, C. C. [1 ]
LeFevre, H. J. [1 ]
Manuel, M. J. -E. [1 ]
Streit, J. [5 ]
Wan, W. C. [1 ]
Drake, R. P. [1 ]
机构
[1] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA
[2] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[5] Schafer Corp, Livermore, CA 94551 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2014年 / 85卷 / 11期
基金
美国国家科学基金会;
关键词
FACILITY;
D O I
10.1063/1.4886388
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-alpha x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:3
相关论文
共 50 条
  • [11] Design of proton deflectometry with in situ x-ray fiducial for magnetized high-energy-density systems
    Malko, Sophia
    Johnson, Courtney
    Schaeffer, Derek B.
    Fox, William
    Fiksel, Gennady
    APPLIED OPTICS, 2022, 61 (06) : C133 - C142
  • [12] Imaging detectors for 20-100 keV x-ray backlighters in high-energy-density experimental science petawatt experiments
    Wickersham, JE
    Park, HS
    Bell, PM
    Koch, JA
    Landen, OL
    Moody, JD
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (10): : 4051 - 4053
  • [13] A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution
    Romano, F. P.
    Altana, C.
    Cosentino, L.
    Celona, L.
    Gammino, S.
    Mascali, D.
    Pappalardo, L.
    Rizzo, F.
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2013, 86 : 60 - 65
  • [14] Fluorescence concerns in high energy x-ray yield scaling and imaging studies
    Kyrala, GA
    Workman, JB
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (01): : 682 - 685
  • [15] First Demonstration of Compton Camera Used for X-Ray Fluorescence Imaging
    Wu, Chuanpeng
    Li, Liang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (05) : 1314 - 1324
  • [16] Imaging x-ray spectrometer at the high energy density instrument of the European x-ray free electron laser
    Pan, X.
    Smid, M.
    Stefanikova, R.
    Donat, F.
    Baehtz, C.
    Burian, T.
    Cerantola, V.
    Gaus, L.
    Humphries, O. S.
    Hajkova, V.
    Juha, L.
    Krupka, M.
    Kozlova, M.
    Konopkova, Z.
    Preston, T. R.
    Wollenweber, L.
    Zastrau, U.
    Falk, K.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (03):
  • [17] Feasibility of fluorescence-based imaging of high-energy-density hydrodynamics experiments
    Lanier, NE
    Barnes, CW
    Perea, R
    Steckle, W
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (03): : 2169 - 2173
  • [18] Toward Practical Demonstration of High-Energy-Density Batteries
    Shearing, Paul R.
    Johnson, Lee R.
    JOULE, 2020, 4 (07) : 1359 - 1361
  • [19] X-ray fluorescence imaging
    Lider, V. V.
    PHYSICS-USPEKHI, 2018, 61 (10) : 980 - 999
  • [20] X-ray imaging methods for high-energy density physics applications
    Kozioziemski, B.
    Bachmann, B.
    Do, A.
    Tommasini, R.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (04):