A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries

被引:41
|
作者
Lacey, Matthew J. [1 ]
Osterlund, Viking [1 ]
Bergfelt, Andreas [1 ]
Jeschull, Fabian [1 ]
Bowden, Tim [1 ]
Brandell, Daniel [1 ]
机构
[1] Uppsala Univ, Dept Chem, Angstrom Lab, Box 538,Lagerhyddsvagen 1, S-75121 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
binders; electrochemistry; energy conversion; lithium-sulfur batteries; polymers; LI-S SYSTEM; SELF-DISCHARGE; POLYSULFIDE SHUTTLE; PERFORMANCE; CAPACITY; CATHODE; POLYMER; SURFACE; ELECTROLYTE; CHEMISTRY;
D O I
10.1002/cssc.201700743
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report here a water-based functional binder framework for the lithium-sulfur battery systems, based on the general combination of a polyether and an amide-containing polymer. These binders are applied to positive electrodes optimised towards high-energy electrochemical performance based only on commercially available materials. Electrodes with up to 4 mAhcm(-2) capacity and 97-98% coulombic efficiency are achievable in electrodes with a 65% total sulfur content and a poly(ethylene oxide): poly(vinylpyrrolidone) (PEO: PVP) binder system. Exchange of either binder component for a different polymer with similar functionality preserves the high capacity and coulombic efficiency. The improvement in coulombic efficiency from the inclusion of the coordinating amide group was also observed in electrodes where pyrrolidone moieties were covalently grafted to the carbon black, indicating the role of this functionality in facilitating polysulfide adsorption to the electrode surface. The mechanical properties of the electrodes appear not to significantly influence sulfur utilisation or coulombic efficiency in the short term but rather determine retention of these properties over extended cycling. These results demonstrate the robustness of this very straightforward approach, as well as the considerable scope for designing binder materials with targeted properties.
引用
收藏
页码:2758 / 2766
页数:9
相关论文
共 50 条
  • [31] Nontraditional Approaches To Enable High-Energy and Long-Life Lithium-Sulfur Batteries
    Zhao, Chen
    Amine, Khalil
    Xu, Gui-Liang
    ACCOUNTS OF CHEMICAL RESEARCH, 2023, 56 (19) : 2700 - 2712
  • [32] Pie-like electrode design for high-energy density lithium-sulfur batteries
    Li, Zhen
    Zhang, Jin Tao
    Chen, Yu Ming
    Li, Ju
    Lou, Xiong Wen
    NATURE COMMUNICATIONS, 2015, 6
  • [33] Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium-Sulfur Batteries
    Pan, Huilin
    Han, Kee Sung
    Vijayakumar, M.
    Xiao, Jie
    Cao, Ruiguo
    Chen, Junzheng
    Zhang, Jiguang
    Mueller, Karl T.
    Shao, Yuyan
    Liu, Jun
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) : 4290 - 4295
  • [34] The Study on the Application of Pectin Binder in Lithium-Sulfur Batteries
    Xu, Han-tao
    Zou, Zhen-yu
    Tang, Ben
    Chen, Zhou
    Zhang, Huan-rui
    Chen, Jin-chun
    Cui, Guang-lei
    ACTA POLYMERICA SINICA, 2021, 52 (02): : 166 - 175
  • [35] Fluorinated Covalent Organic Framework-Based Nanofluidic Interface for Robust Lithium-Sulfur Batteries
    Zhang, Kun
    Li, Xing
    Ma, Li
    Chen, Fangzheng
    Chen, Zhongxin
    Yuan, Yijia
    Zhao, Yaohua
    Yang, Jinlin
    Liu, Jia
    Xie, Keyu
    Loh, Kian Ping
    ACS NANO, 2023, 17 (03) : 2901 - 2911
  • [36] Functional organosulfide electrolyte for high performance lithium-sulfur batteries
    Chen, Shuru
    Gao, Yue
    Wang, Donghai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [37] Packing sulfur into carbon framework for high volumetric performance lithium-sulfur batteries
    Chen Zhang
    Quan-Hong Yang
    Science China Materials, 2015, 58 : 349 - 354
  • [38] Packing sulfur into carbon framework for high volumetric performance lithium-sulfur batteries
    Zhang, Chen
    Yang, Quan-Hong
    SCIENCE CHINA-MATERIALS, 2015, 58 (05) : 349 - 354
  • [39] Robust Lithium Metal Anodes Realized by Lithiophilic 3D Porous Current Collectors for Constructing High-Energy Lithium-Sulfur Batteries
    Pei, Fei
    Fu, Ang
    Ye, Weibin
    Peng, Jian
    Fang, Xiaoliang
    Wang, Ming-Sheng
    Zheng, Nanfeng
    ACS NANO, 2019, 13 (07) : 8337 - 8346
  • [40] Sulfur-containing polymer/carbon nanotube composite cathode materials for high-energy lithium-sulfur batteries
    Wang, Shuimiao
    Wu, Yurui
    Yang, Ming
    Sun, Li
    Tao, Yong
    Yang, Chang-An
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (02) : 621 - 630