Realistic Subsurface Anomaly Discrimination Using Electromagnetic Induction and an SVM Classifier

被引:17
|
作者
Fernandez, Juan Pablo [1 ]
Shubitidze, Fridon [1 ,2 ]
Shamatava, Irma [1 ,2 ]
Barrowes, Benjamin E. [1 ,3 ]
O'Neill, Kevin [1 ,3 ]
机构
[1] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[2] Sky Res Inc, Hanover, NH 03755 USA
[3] USA, Cold Reg Res & Engn Lab, ERDC, Hanover, NH 03755 USA
关键词
SUPPORT VECTOR MACHINES; UNEXPLODED ORDNANCE; BURIED OBJECTS; TUTORIAL; MODEL; UXO;
D O I
10.1155/2010/305890
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The environmental research program of the United States military has set up blind tests for detection and discrimination of unexploded ordnance. One such test consists of measurements taken with the EM-63 sensor at Camp Sibert, AL. We review the performance on the test of a procedure that combines a field-potential (HAP) method to locate targets, the normalized surface magnetic source (NSMS) model to characterize them, and a support vector machine (SVM) to classify them. The HAP method infers location from the scattered magnetic field and its associated scalar potential, the latter reconstructed using equivalent sources. NSMS replaces the target with an enclosing spheroid of equivalent radial magnetization whose integral it uses as a discriminator. SVM generalizes from empirical evidence and can be adapted for multiclass discrimination using a voting system. Our method identifies all potentially dangerous targets correctly and has a false-alarm rate of about 5%.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] AUTOMATIC GENERATION OF DEM USING SVM CLASSIFIER
    Dubey, Rakesh
    Bharadwaj, Shruti
    Biswas, Susham
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 121 - 127
  • [22] Subsurface electromagnetic induction imaging for unexploded ordnance detection
    Grzegorczyk, Tomasz M.
    Fernandez, Juan Pablo
    Shubitidze, Fridon
    O'Neill, Kevin
    Barrowes, Benjamin E.
    JOURNAL OF APPLIED GEOPHYSICS, 2012, 79 : 38 - 45
  • [23] EFFECT OF SUBSURFACE GEOLOGIC STRUCTURE IN ELECTROMAGNETIC INDUCTION PROSPECTING
    GEYER, RG
    GEOPHYSICS, 1970, 35 (06) : 1163 - &
  • [24] Brain Tumor Detection Using SVM Classifier
    Kumar, T. Sathies
    Rashmi, K.
    Ramadoss, Sreevidhya
    Sandhya, L. K.
    Sangeetha, T. J.
    2017 IEEE 3RD INTERNATIONAL CONFERENCE ON SENSING, SIGNAL PROCESSING AND SECURITY (ICSSS), 2017, : 318 - 323
  • [25] Network anomaly identification using supervised classifier
    1600, Slovene Society Informatika (37):
  • [26] Network Anomaly Identification using Supervised Classifier
    Gogoi, Prasanta
    Borah, B.
    Bhattacharyya, D. K.
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2013, 37 (01): : 93 - 106
  • [27] Using machine learning to predict optimal electromagnetic induction instrument configurations for characterizing the shallow subsurface
    van't Veen, Kim Madsen
    Ferre, Ty Paul Andrew
    Iversen, Bo Vangso
    Borgesen, Christen Duus
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2022, 26 (01) : 55 - 70
  • [28] Automatic Classification of Monocots and Dicots using SVM Classifier
    Nasreen, Najiya P.
    Kumar, Chempak A.
    Nabeel, Asjad P.
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE (ICIS), 2016, : 28 - 31
  • [29] Facial emotion recognition in the elderly using a SVM classifier
    Lopes, Nuno
    Silva, Andre
    Khanal, Salik Ram
    Reis, Arsenio
    Barroso, Joao
    Filipe, Vitor
    Sampaio, Jaime
    PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON TECHNOLOGY AND INNOVATION IN SPORTS, HEALTH AND WELLBEING (TISHW), 2018,
  • [30] Pulmonary Nodule Detection Using a Cascaded SVM Classifier
    Bergtholdt, Martin
    Wiemker, Rafael
    Klinder, Tobias
    MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS, 2015, 9785