LABEL PREDICTION FRAMEWORK FOR SEMI-SUPERVISED CROSS-MODAL RETRIEVAL

被引:0
|
作者
Mandal, Devraj [1 ]
Rao, Pramod [2 ]
Biswas, Soma [1 ]
机构
[1] Indian Inst Sci, Bengaluru, India
[2] Saarland Univ, Saarbrucken, Germany
关键词
Cross-modal retrieval; semi-supervised learning;
D O I
10.1109/icip40778.2020.9190722
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Cross-modal data matching refers to retrieval of data from one modality, when given a query from another modality. In general, supervised algorithms achieve better retrieval performance compared to their unsupervised counterpart, as they can learn better representative features by leveraging the available label information. However, this comes at the cost of requiring huge amount of labeled examples, which may not always be available. In this work, we propose a novel framework in a semi-supervised cross-modal retrieval setting, which can predict the labels of the unlabeled data using complementary information from different modalities. The proposed framework can be used as an add-on with any baseline cross-modal algorithm to give significant performance improvement, even in case of limited labeled data. Extensive evaluation using several baseline algorithms across three different datasets show the effectiveness of our label prediction framework.
引用
收藏
页码:2311 / 2315
页数:5
相关论文
共 50 条
  • [21] Enhancing Semi-Supervised Learning with Cross-Modal Knowledge
    Zhu, Hui
    Lu, Yongchun
    Wang, Hongbin
    Zhou, Xunyi
    Ma, Qin
    Liu, Yanhong
    Jiang, Ning
    Wei, Xin
    Zeng, Linchengxi
    Zhao, Xiaofang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4456 - 4465
  • [22] Semi-supervised cross-modal retrieval with graph-based semantic alignment network
    Zhang, Lei
    Chen, Leiting
    Ou, Weihua
    Zhou, Chuan
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [23] Clustering-Based Semi-Supervised Cross-Modal Retrieval Using Scene Graph
    Kong, Yixue
    Feng, Yong
    Zhou, Mingliang
    Xiong, Xiancai
    Wang, Yongheng
    Qiang, Baohua
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (12) : 1299 - 1314
  • [24] Semi-supervised Coupled Dictionary Learning for Cross-modal Retrieval in Internet Images and Texts
    Xu, Xing
    Yang, Yang
    Shimada, Atsushi
    Taniguchi, Rin-ichiro
    He, Li
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 847 - 850
  • [25] Intra-class low-rank regularization for supervised and semi-supervised cross-modal retrieval
    Kang, Peipei
    Lin, Zehang
    Yang, Zhenguo
    Fang, Xiaozhao
    Bronstein, Alexander M.
    Li, Qing
    Liu, Wenyin
    APPLIED INTELLIGENCE, 2022, 52 (01) : 33 - 54
  • [26] Intra-class low-rank regularization for supervised and semi-supervised cross-modal retrieval
    Peipei Kang
    Zehang Lin
    Zhenguo Yang
    Xiaozhao Fang
    Alexander M. Bronstein
    Qing Li
    Wenyin Liu
    Applied Intelligence, 2022, 52 : 33 - 54
  • [27] Self-Training Based Semi-Supervised and Semi-Paired Hashing Cross-Modal Retrieval
    Jing, Rongrong
    Tian, Hu
    Zhang, Xingwei
    Zhou, Gang
    Zheng, Xiaolong
    Zeng, Dajun
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [28] Semi-Relaxation Supervised Hashing for Cross-Modal Retrieval
    Zhang, Peng-Fei
    Li, Chuan-Xiang
    Liu, Meng-Yuan
    Nie, Liqiang
    Xu, Xin-Shun
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1762 - 1770
  • [29] SEMI-SUPERVISED GRAPH CONVOLUTIONAL HASHING NETWORK FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
    Shen, Zhanjian
    Zhai, Deming
    Liu, Xianming
    Jiang, Junjun
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2366 - 2370
  • [30] Coupled feature selection based semi-supervised modality-dependent cross-modal retrieval
    En Yu
    Jiande Sun
    Li Wang
    Wenbo Wan
    Huaxiang Zhang
    Multimedia Tools and Applications, 2019, 78 : 28931 - 28951