LABEL PREDICTION FRAMEWORK FOR SEMI-SUPERVISED CROSS-MODAL RETRIEVAL

被引:0
|
作者
Mandal, Devraj [1 ]
Rao, Pramod [2 ]
Biswas, Soma [1 ]
机构
[1] Indian Inst Sci, Bengaluru, India
[2] Saarland Univ, Saarbrucken, Germany
关键词
Cross-modal retrieval; semi-supervised learning;
D O I
10.1109/icip40778.2020.9190722
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Cross-modal data matching refers to retrieval of data from one modality, when given a query from another modality. In general, supervised algorithms achieve better retrieval performance compared to their unsupervised counterpart, as they can learn better representative features by leveraging the available label information. However, this comes at the cost of requiring huge amount of labeled examples, which may not always be available. In this work, we propose a novel framework in a semi-supervised cross-modal retrieval setting, which can predict the labels of the unlabeled data using complementary information from different modalities. The proposed framework can be used as an add-on with any baseline cross-modal algorithm to give significant performance improvement, even in case of limited labeled data. Extensive evaluation using several baseline algorithms across three different datasets show the effectiveness of our label prediction framework.
引用
收藏
页码:2311 / 2315
页数:5
相关论文
共 50 条
  • [1] Semi-Supervised Cross-Modal Retrieval With Label Prediction
    Mandal, Devraj
    Rao, Pramod
    Biswas, Soma
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (09) : 2345 - 2353
  • [2] A semi-supervised cross-modal memory bank for cross-modal retrieval
    Huang, Yingying
    Hu, Bingliang
    Zhang, Yipeng
    Gao, Chi
    Wang, Quan
    NEUROCOMPUTING, 2024, 579
  • [3] Semi-supervised Cross-Modal Hashing Based on Label Prediction and Distance Preserving
    Zhang, Xu
    Tian, Xin
    Yang, Bing
    Zhang, Zuyu
    Li, Yan
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 324 - 330
  • [4] Semi-supervised cross-modal learning for cross modal retrieval and image annotation
    Fuhao Zou
    Xingqiang Bai
    Chaoyang Luan
    Kai Li
    Yunfei Wang
    Hefei Ling
    World Wide Web, 2019, 22 : 825 - 841
  • [5] Semi-supervised cross-modal learning for cross modal retrieval and image annotation
    Zou, Fuhao
    Bai, Xingqiang
    Luan, Chaoyang
    Li, Kai
    Wang, Yunfei
    Ling, Hefei
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2019, 22 (02): : 825 - 841
  • [6] Semi-supervised discrete hashing for efficient cross-modal retrieval
    Wang, Xingzhi
    Liu, Xin
    Peng, Shu-Juan
    Zhong, Bineng
    Chen, Yewang
    Du, Ji-Xiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (35-36) : 25335 - 25356
  • [7] Adaptively Unified Semi-supervised Learning for Cross-Modal Retrieval
    Zhang, Liang
    Ma, Bingpeng
    He, Jianfeng
    Li, Guorong
    Huang, Qingming
    Tian, Qi
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3406 - 3412
  • [8] Semi-supervised discrete hashing for efficient cross-modal retrieval
    Xingzhi Wang
    Xin Liu
    Shu-Juan Peng
    Bineng Zhong
    Yewang Chen
    Ji-Xiang Du
    Multimedia Tools and Applications, 2020, 79 : 25335 - 25356
  • [9] Semi-Supervised Cross-Modal Retrieval Based on Discriminative Comapping
    Liu, Li
    Dong, Xiao
    Wang, Tianshi
    COMPLEXITY, 2020, 2020
  • [10] Adaptive Semi-Supervised Feature Selection for Cross-Modal Retrieval
    Yu, En
    Sun, Jiande
    Li, Jing
    Chang, Xiaojun
    Han, Xian-Hua
    Hauptmann, Alexander G.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (05) : 1276 - 1288