共 50 条
Banchoff's sphere and branched covers over the trefoil
被引:0
|作者:
Lozano Rojo, Alvaro
[1
,2
]
Vigara, Ruben
[1
,2
]
机构:
[1] Acad Gen Mil, Ctr Univ Def Zaragoza, Carretera Huesca S-N, Zaragoza 50090, Spain
[2] Univ Zaragoza, IUMA, Zaragoza, Spain
来源:
关键词:
3-Manifold;
Immersed surface;
Filling Dehn surface;
Link;
Knot;
Branched covering;
D O I:
10.1007/s13398-017-0477-5
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A filling Dehn surface in a 3-manifold M is a generically immersed surface in M that induces a cellular decomposition of M. Given a tame link L in M, there is a filling Dehn sphere of M that "trivializes" (diametrically splits) it. This allows to construct filling Dehn surfaces in the coverings of M branched over L. It is shown that one of the simplest filling Dehn spheres of (Banchoff's sphere) diametrically splits the trefoil knot. Filling Dehn spheres, and their Johansson diagrams, are constructed for the coverings of branched over the trefoil. The construction is explained in detail. Johansson diagrams for generic cyclic coverings and for the simplest locally cyclic and irregular ones are constructed explicitly, providing new proofs of known results about cyclic coverings and the 3-fold irregular covering over the trefoil.
引用
收藏
页码:751 / 765
页数:15
相关论文