Banchoff's sphere and branched covers over the trefoil

被引:0
|
作者
Lozano Rojo, Alvaro [1 ,2 ]
Vigara, Ruben [1 ,2 ]
机构
[1] Acad Gen Mil, Ctr Univ Def Zaragoza, Carretera Huesca S-N, Zaragoza 50090, Spain
[2] Univ Zaragoza, IUMA, Zaragoza, Spain
关键词
3-Manifold; Immersed surface; Filling Dehn surface; Link; Knot; Branched covering;
D O I
10.1007/s13398-017-0477-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A filling Dehn surface in a 3-manifold M is a generically immersed surface in M that induces a cellular decomposition of M. Given a tame link L in M, there is a filling Dehn sphere of M that "trivializes" (diametrically splits) it. This allows to construct filling Dehn surfaces in the coverings of M branched over L. It is shown that one of the simplest filling Dehn spheres of (Banchoff's sphere) diametrically splits the trefoil knot. Filling Dehn spheres, and their Johansson diagrams, are constructed for the coverings of branched over the trefoil. The construction is explained in detail. Johansson diagrams for generic cyclic coverings and for the simplest locally cyclic and irregular ones are constructed explicitly, providing new proofs of known results about cyclic coverings and the 3-fold irregular covering over the trefoil.
引用
收藏
页码:751 / 765
页数:15
相关论文
共 50 条
  • [1] Banchoff’s sphere and branched covers over the trefoil
    Álvaro Lozano Rojo
    Rubén Vigara
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 751 - 765
  • [3] Combinatorics of Loop Equations for Branched Covers of Sphere
    Dunin-Barkowski, Petr
    Orantin, Nicolas
    Popolitov, Aleksandr
    Shadrin, Sergey
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (18) : 5638 - 5662
  • [4] ON HYPERBOLIC SURFACE BUNDLES OVER THE CIRCLE AS BRANCHED DOUBLE COVERS OF THE 3-SPHERE
    Hirose, Susumu
    Kin, Eiko
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (04) : 1805 - 1814
  • [5] Branched covers of the sphere and the prime-degree conjecture
    Maria Antonietta Pascali
    Carlo Petronio
    Annali di Matematica Pura ed Applicata, 2012, 191 : 563 - 594
  • [6] Branched covers of the sphere and the prime-degree conjecture
    Pascali, Maria Antonietta
    Petronio, Carlo
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (03) : 563 - 594
  • [7] 4-manifolds as covers of the 4-sphere branched over non-singular surfaces
    Iori, Massimiliano
    Piergallini, Riccardo
    GEOMETRY & TOPOLOGY, 2002, 6 : 393 - 401
  • [8] Generic covers branched over {xn = ym}
    Manfredini, S
    Pignatelli, R
    TOPOLOGY AND ITS APPLICATIONS, 2000, 103 (01) : 1 - 31
  • [9] BRANCHED COVERS OVER STRONGLY AMPHICHEIRAL LINKS
    HEMPEL, J
    TOPOLOGY, 1990, 29 (02) : 247 - 255
  • [10] Counting tensor model observables and branched covers of the 2-sphere
    Ben Geloun, Joseph
    Ramgoolam, Sanjaye
    ANNALES DE L INSTITUT HENRI POINCARE D, 2014, 1 (01): : 77 - 138