Deep Learning Object-Impulse Detection for Enhancing Leakage Detection of a Boiler Tube Using Acoustic Emission Signal

被引:11
|
作者
Bach Phi Duong [1 ]
Kim, Jaeyoung [1 ]
Kim, Cheol-Hong [2 ]
Kim, Jong-Myon [1 ]
机构
[1] Univ Ulsan, Sch Elect Elect & Comp Engn, Ulsan 44610, South Korea
[2] Chonnam Natl Univ, Sch Elect & Comp Engn, Gwangju 61186, South Korea
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 20期
关键词
boiler tube leakage diagnosis; impulse detection; acoustic emission; boundary regression; deep convolution neural network; FAULT-DETECTION; DIAGNOSIS; FURNACE;
D O I
10.3390/app9204368
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Advances in technology have enhanced the ability to detect leakages in boiler tube components in thermal power plants. As a specific issue, the interaction between the coal fuel stream and the boiler tube membrane generates random and high-amplitude impulses, which negatively affect the measured acoustic emission (AE) signal from leakages. It is essential to detect and practically handle these kinds of impulses. Based on the object detection concept, this paper proposes an impulse detection methodology that employs deep learning flexible boundary regression (DLFBR). First, the shape extraction (SE) preprocessing technique is implemented to yield the shape signal, which contains intrinsic information about the impulse from the raw AE signal. Then, DLFBR extracts and generates both the feature map and the confidence mask from the shape signal to regress a boundary box, which specifies the position of the impulse. For illustration purposes, the proposed algorithm is applied to an experimental leakage detection dataset recorded from a subcritical boiler unit with a tube membrane. Experimental results show that the proposed method is effective for detecting impulses of leakage in a boiler tube testbed, providing 99.8% average classification accuracy.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Underwater Object Detection and Pose Estimation using Deep Learning
    Jeon, MyungHwan
    Lee, Yeongjun
    Shin, Young-Sik
    Jang, Hyesu
    Kim, Ayoung
    IFAC PAPERSONLINE, 2019, 52 (21): : 78 - 81
  • [42] Anonymizing Radiographs Using an Object Detection Deep Learning Algorithm
    Khosravi, Bardia
    Mickley, John P.
    Rouzrokh, Pouria
    Taunton, Michael J.
    Larson, A. Noelle
    Erickson, Bradley J.
    Wyles, Cody C.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2023, 5 (06)
  • [43] Review of Different Techniques for Object Detection using Deep Learning
    Mittal, Usha
    Srivastava, Sonal
    Chawla, Priyanka
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON ADVANCED INFORMATICS FOR COMPUTING RESEARCH (ICAICR '19), 2019,
  • [44] Object Detection Using Deep Learning Methods in Traffic Scenarios
    Boukerche, Azzedine
    Hou, Zhijun
    ACM COMPUTING SURVEYS, 2021, 54 (02)
  • [45] Object Detection for Autonomous Vehicle with LiDAR Using Deep Learning
    Yahya, Muhammad Azri
    Abdul-Rahman, Shuzlina
    Mutalib, Sofianita
    2020 IEEE 10TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET), 2020, : 207 - 212
  • [46] Dynamic Approach for Object Detection using Deep Reinforcement Learning
    Borkar, Sheetal
    Singh, Upasna
    Soumya, S.
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 393 - 397
  • [47] Enhancing AmBC Systems With Deep Learning for Joint Channel Estimation and Signal Detection
    Zargari, Shayan
    Hakimi, Azar
    Tellambura, Chintha
    Maaref, Amine
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (03) : 1716 - 1731
  • [48] Enhancing System Security by Intrusion Detection Using Deep Learning
    Sama, Lakshit
    Wang, Hua
    Watters, Paul
    DATABASES THEORY AND APPLICATIONS (ADC 2022), 2022, 13459 : 169 - 176
  • [49] Solar Event Detection Using Deep-Learning-Based Object Detection Methods
    Baek, Ji-Hye
    Kim, Sujin
    Choi, Seonghwan
    Park, Jongyeob
    Kim, Jihun
    Jo, Wonkeun
    Kim, Dongil
    SOLAR PHYSICS, 2021, 296 (11)
  • [50] Solar Event Detection Using Deep-Learning-Based Object Detection Methods
    Ji-Hye Baek
    Sujin Kim
    Seonghwan Choi
    Jongyeob Park
    Jihun Kim
    Wonkeun Jo
    Dongil Kim
    Solar Physics, 2021, 296