Skin reflectance modelling for face recognition

被引:4
|
作者
Smith, WAP [1 ]
Robles-Kelly, A [1 ]
Hancock, ER [1 ]
机构
[1] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
关键词
D O I
10.1109/ICPR.2004.1334505
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a parameter-free method for estimating the BRDF of a subject's skin from a single image. We show how the technique can be used for photometric correction as a preprocessing step for face analysis tasks, and show its application to graphics by re-rendering faces with different skin reflectance models.
引用
收藏
页码:210 / 213
页数:4
相关论文
共 50 条
  • [21] Development of face recognition: Dynamic causal modelling of MEG data
    He, Wei
    Johnson, Blake W.
    DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2018, 30 : 13 - 22
  • [22] Parametric modelling and warping for 3D face recognition
    Bai, L
    Song, Y
    Vision '05: Proceedings of the 2005 International Conference on Computer Vision, 2005, : 10 - 16
  • [23] Skin-based face tracking using illumination recognition
    Lin, Yuan-Pin
    Chao, Yi-Ping
    Lin, Chung-Chih
    Chen, Jyh-Horng
    TENCON 2005 - 2005 IEEE REGION 10 CONFERENCE, VOLS 1-5, 2006, : 2592 - +
  • [24] Detecting skin in face recognition systems: A colour spaces study
    Chaves-Gonzalez, Jose M.
    Vega-Rodriguez, Miguel A.
    Gomez-Pulido, Juan A.
    Sanchez-Perez, Juan M.
    DIGITAL SIGNAL PROCESSING, 2010, 20 (03) : 806 - 823
  • [25] Joint Reflectance Field Estimation and Sparse Representation for Face Image Illumination Preprocessing and Recognition
    Zhang, Jian
    Liu, Weihua
    Bo, Liling
    Zhang, Heng
    Li, Hongran
    Xu, Shuai
    NEURAL PROCESSING LETTERS, 2022, 54 (05) : 3551 - 3564
  • [26] Joint Reflectance Field Estimation and Sparse Representation for Face Image Illumination Preprocessing and Recognition
    Jian Zhang
    Weihua Liu
    Liling Bo
    Heng Zhang
    Hongran Li
    Shuai Xu
    Neural Processing Letters, 2022, 54 : 3551 - 3564
  • [27] Statistical shape modelling for expression-invariant face analysis and recognition
    Quan, Wei
    Matuszewski, Bogdan J.
    Shark, Lik-Kwan
    PATTERN ANALYSIS AND APPLICATIONS, 2016, 19 (03) : 765 - 781
  • [28] A multinomial modelling approach to face identity recognition during instructed threat
    Arnold, Nina R.
    Cruz, Hernan Gonzalez
    Schellhaas, Sabine
    Bublatzky, Florian
    COGNITION & EMOTION, 2021, 35 (07) : 1302 - 1319
  • [29] Heterogeneous Face Recognition using Inter-Session Variability Modelling
    Pereira, Tiago de Freitas
    Marcel, Sebastien
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 179 - 186
  • [30] Comparison of Various Face Recognition Techniques in Modelling Associations of Discriminant Factors
    Vijayakumar, T.
    Kedarnath, B.
    Harshavardhan, Achampet
    INTERNATIONAL CONFERENCE ON INTELLIGENT DATA COMMUNICATION TECHNOLOGIES AND INTERNET OF THINGS, ICICI 2018, 2019, 26 : 1113 - 1121