Recurrences in three-state quantum walks on a plane

被引:25
|
作者
Kollar, B. [2 ]
Stefanak, M. [1 ]
Kiss, T. [2 ]
Jex, I. [1 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, CR-11519 Prague 1, Stare Mesto, Czech Republic
[2] Hungarian Acad Sci, Res Inst Solid State Phys & Opt, Dept Quantum Opt & Quantum Informat, H-1121 Budapest, Hungary
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 01期
关键词
LATTICE;
D O I
10.1103/PhysRevA.82.012303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the role of dimensionality in the time evolution of discrete-time quantum walks through the example of the three-state walk on a two-dimensional triangular lattice. We show that the three-state Grover walk does not lead to trapping (localization) or recurrence to the origin, in sharp contrast to the Grover walk on the two-dimensional square lattice. We determine the power-law scaling of the probability at the origin with the method of stationary phase. We prove that only a special subclass of coin operators can lead to recurrence, and there are no coins that lead to localization. The propagation for the recurrent subclass of coins is quasi-one dimensional.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Nonlinear three-state quantum walks
    Falcao, P. R. N.
    Mendonca, J. P.
    Buraque, A. R. C.
    Dias, W. S.
    Almeida, G. M. A.
    Lyra, M. L.
    PHYSICAL REVIEW A, 2022, 106 (04)
  • [2] Three-state quantum walks on cycles
    Han, Qi
    Bai, Ning
    Kou, Yaxin
    Wang, Huan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (15):
  • [3] Mixing times of three-state quantum walks on cycles
    Han, Qi
    Bai, Ning
    Wang, Huan
    Kou, Yaxin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (10):
  • [4] Stability of point spectrum for three-state quantum walks on a line
    Štefaňák, Martin
    Bezděková, Iva
    Jex, Igor
    Barnett, Stephen M.
    Quantum Information and Computation, 2014, 14 (13-14): : 1213 - 1226
  • [5] Universal dynamical scaling laws in three-state quantum walks
    Falcao, P. R. N.
    Buarque, A. R. C.
    Dias, W. S.
    Almeida, G. M. A.
    Lyra, M. L.
    PHYSICAL REVIEW E, 2021, 104 (05)
  • [6] STABILITY OF POINT SPECTRUM FOR THREE-STATE QUANTUM WALKS ON A LINE
    Stefanak, Martin
    Bezdekova, Iva
    Jex, Igor
    Barnett, Stephen M.
    QUANTUM INFORMATION & COMPUTATION, 2014, 14 (13-14) : 1213 - 1226
  • [8] Limit distributions of three-state quantum walks: The role of coin eigenstates
    Stefanak, M.
    Bezdekova, I.
    Jex, I.
    PHYSICAL REVIEW A, 2014, 90 (01):
  • [9] One-dimensional three-state quantum walks: Weak limits and localization
    Ko, Chul Ki
    Segawa, Etsuo
    Yoo, Hyun Jae
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2016, 19 (04)
  • [10] Monitored recurrence of a one-parameter family of three-state quantum walks
    Stefanak, Martin
    PHYSICA SCRIPTA, 2023, 98 (06)