Three-state quantum walks on cycles

被引:4
|
作者
Han, Qi [1 ]
Bai, Ning [1 ]
Kou, Yaxin [1 ]
Wang, Huan [1 ]
机构
[1] Northwest Normal Univ, Sch Math & Stat, Lanzhou 730070, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Three-state quantum walk; shift operator; Grover operator; limit distribution;
D O I
10.1142/S0217979222500758
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, on the basis of constructing a new shift operator S and choosing the Grover coin G as coin operator C, we get the standard evolution operator U on cycles. Using U, we not only got the analytical expression of wavefunction psi(s,j), but also obtained the conclusion that the limit distribution pi(nu) of N, which is not uniform distribution, regardless of N is odd or even.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Mixing times of three-state quantum walks on cycles
    Han, Qi
    Bai, Ning
    Wang, Huan
    Kou, Yaxin
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (10):
  • [2] Nonlinear three-state quantum walks
    Falcao, P. R. N.
    Mendonca, J. P.
    Buraque, A. R. C.
    Dias, W. S.
    Almeida, G. M. A.
    Lyra, M. L.
    [J]. PHYSICAL REVIEW A, 2022, 106 (04)
  • [3] Recurrences in three-state quantum walks on a plane
    Kollar, B.
    Stefanak, M.
    Kiss, T.
    Jex, I.
    [J]. PHYSICAL REVIEW A, 2010, 82 (01):
  • [4] Universal dynamical scaling laws in three-state quantum walks
    Falcao, P. R. N.
    Buarque, A. R. C.
    Dias, W. S.
    Almeida, G. M. A.
    Lyra, M. L.
    [J]. PHYSICAL REVIEW E, 2021, 104 (05)
  • [5] Stability of point spectrum for three-state quantum walks on a line
    Štefaňák, Martin
    Bezděková, Iva
    Jex, Igor
    Barnett, Stephen M.
    [J]. Quantum Information and Computation, 2014, 14 (13-14): : 1213 - 1226
  • [6] STABILITY OF POINT SPECTRUM FOR THREE-STATE QUANTUM WALKS ON A LINE
    Stefanak, Martin
    Bezdekova, Iva
    Jex, Igor
    Barnett, Stephen M.
    [J]. QUANTUM INFORMATION & COMPUTATION, 2014, 14 (13-14) : 1213 - 1226
  • [8] Limit distributions of three-state quantum walks: The role of coin eigenstates
    Stefanak, M.
    Bezdekova, I.
    Jex, I.
    [J]. PHYSICAL REVIEW A, 2014, 90 (01):
  • [9] One-dimensional three-state quantum walks: Weak limits and localization
    Ko, Chul Ki
    Segawa, Etsuo
    Yoo, Hyun Jae
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2016, 19 (04)
  • [10] Monitored recurrence of a one-parameter family of three-state quantum walks
    Stefanak, Martin
    [J]. PHYSICA SCRIPTA, 2023, 98 (06)