On-chip Fourier-transform spectrometers and machine learning: a new route to smart photonic sensors

被引:25
|
作者
Herrero-Bermello, Alaine [1 ]
Li, Jiangfeng [2 ]
Khazaei, Mohammad [2 ]
Grinberg, Yuri [3 ]
Velasco, Aitor V. [1 ]
Vachon, Martin [3 ]
Cheben, Pavel [3 ]
Stankovic, Lina [2 ]
Stankovic, Vladimir [2 ]
Xu, Dan-Xia [3 ]
Schmid, Jens H. [3 ]
Alonso-Ramos, Carlos [4 ]
机构
[1] CSIC, Inst Opt, Madrid 28006, Spain
[2] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XW, Lanark, Scotland
[3] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada
[4] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, CNRS, Univ Paris Sud, F-91405 Orsay, France
基金
欧盟地平线“2020”;
关键词
D O I
10.1364/OL.44.005840
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Miniaturized silicon photonics spectrometers capable of detecting specific absorption features have great potential for mass market applications in medicine, environmental monitoring, and hazard detection. However, state-of-the-art silicon spectrometers are limited by fabrication imperfections and environmental conditions, especially temperature variations, since uncontrolled temperature drifts of only 0.1 degrees C distort the retrieved spectrum precluding the detection and classification of the absorption features. Here we present a new strategy that exploits the robustness of machine learning algorithms to signal imperfections, enabling recognition of specific absorption features in a wide range of environmental conditions. We combine on-chip spatial heterodyne Fourier-transform spectrometers and supervised learning to classify different input spectra in the presence of fabrication errors, without temperature stabilization or monitoring. We experimentally show the differentiation of four different input spectra under an uncontrolled 10 degrees C range of temperatures, about 100x increase in operational range, with a success rate up to 82.5% using state-of-the-art support vector machines and artificial neural networks. (C) 2019 Optical Society of America
引用
收藏
页码:5840 / 5843
页数:4
相关论文
共 50 条
  • [21] All-Silicon Double-Cavity Fourier-Transform Infrared Spectrometer On-Chip
    Eltagoury, Yomna M.
    Sabry, Yasser M.
    Khalil, Diaa A.
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (10)
  • [22] Spectroscopic ellipsometry in the mid infrared with a new accessory fitting into standard Fourier-transform spectrometers
    Dittmar, G
    Roseler, A
    Richter, U
    Wielsch, U
    MIKROCHIMICA ACTA, 1997, : 763 - 765
  • [23] On-Chip Digital Fourier-Transform Spectrometer Using a Thermo-Optical Michelson Grating Interferometer
    Soref, Richard A.
    De Leonardis, Francesco
    Passaro, Vittorio M. N.
    Fainman, Yeshaiahu
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (22) : 5160 - 5167
  • [24] On-chip Fourier-transform spectrometer based on spatial heterodyning tuned by thermo-optic effect
    Miguel Montesinos-Ballester
    Qiankun Liu
    Vladyslav Vakarin
    Joan Manel Ramirez
    Carlos Alonso-Ramos
    Xavier Le Roux
    Jacopo Frigerio
    Andrea Ballabio
    Enrico Talamas
    Laurent Vivien
    Giovanni Isella
    Delphine Marris-Morini
    Scientific Reports, 9
  • [25] Silicon nitride on-chip spatial heterodyne Fourier-transform spectrometer with high etendue and broadband operation
    Gonzalez-Andrade, David
    Dinh, Thi Thuy Duong
    Guerber, Sylvain
    Vulliet, Nathalie
    Cremer, Sebastien
    Monfray, Stephane
    Cassan, Eric
    Marris-Morini, Delphine
    Boeuf, Frederic
    Cheben, Pavel
    Vivien, Laurent
    Velasco, Aitor V.
    Alonso-Ramos, Carlos
    2021 IEEE 17TH INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS (GFP 2021), 2021,
  • [26] On-chip Fourier-transform spectrometer based on spatial heterodyning tuned by thermo-optic effect
    Montesinos-Ballester, Miguel
    Liu, Qiankun
    Vakarin, Vladyslav
    Ramirez, Joan Manel
    Alonso-Ramos, Carlos
    Le Roux, Xavier
    Frigerio, Jacopo
    Ballabio, Andrea
    Talamas, Enrico
    Vivien, Laurent
    Isella, Giovanni
    Marris-Morini, Delphine
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [27] Silicon photonic on-chip spatial heterodyne Fourier transform spectrometer exploiting the Jacquinot's advantage
    Thi Thuy Duong Dinh
    Gonzalez-Andrade, David
    Montesinos-Ballester, Miguel
    Deniel, Lucas
    Szelag, Bertrand
    Le Roux, Xavier
    Cassan, Eric
    Marris-Morini, Delphine
    Vivien, Laurent
    Cheben, Pavel
    Velasco, Aitor V.
    Alonso-Ramos, Carlos
    OPTICS LETTERS, 2021, 46 (06) : 1341 - 1344
  • [28] SoC Speed Binning Using Machine Learning and On-Chip Slack Sensors
    Sadi, Mehdi
    Kannan, Sukeshwar
    Winemberg, LeRoy
    Tehranipoor, Mark
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2017, 36 (05) : 842 - 854
  • [29] High-resolution and Large-bandwidth On-chip Microring Resonator Cavity-enhanced Fourier-transform Spectrometer
    Zheng, S. N.
    Chen, Y. Y.
    Cai, H.
    Gu, Y. D.
    Liu, A. Q.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [30] Comparison of machine learning models for classifying edible oils using Fourier-transform infrared spectroscopy
    Lim, Hyeona
    Lee, Seon Yeong
    Kim, Jin Young
    Shin, Yeon Ju
    Jang, Yerin
    Kim, Hyeonjin
    Kim, Byung Hee
    Ahn, Sangdoo
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2025, 46 (02) : 131 - 137