Zonal flows in toroidal systems

被引:29
|
作者
Mynick, H. E.
Boozer, A. H.
机构
[1] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Columbia Univ, Dept Pure & Appl Math, New York, NY 10027 USA
关键词
D O I
10.1063/1.2751604
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An analytic study of the shielding and time evolution of zonal flows in tokamaks and stellarators is presented, using the action-angle formalism. This framework permits one to solve the kinetic equation without expansion of that equation in small parameters of radial excursions and time scales, resulting in more general expressions for the dielectric shielding, and with a scaling extended from that in earlier work. From these expressions, it is found that for each mechanism of collisional transport, there is a corresponding shielding mechanism, of closely related form and scaling. The effect of these generalized expressions on the evolution and size of zonal flows, and their implications for stellarator design are considered.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Zonal Flows and Geodesic Acoustic Mode Oscillations in Tokamaks and Helical Systems
    T.WATARI
    Y.HAMADA
    A.NISHIZAWA
    T.NOTAKE
    N.TAKEUCHI
    Plasma Science and Technology, 2006, (01) : 105 - 109
  • [22] Zonal flows and geodesic acoustic mode oscillations in tokamaks and helical systems
    Watari, T.
    Hamada, Y.
    Nishizawa, A.
    Notake, T.
    Takeuchi, N.
    PLASMA SCIENCE & TECHNOLOGY, 2006, 8 (01) : 105 - 109
  • [23] Zonal Flows and Geodesic Acoustic Mode Oscillations in Tokamaks and Helical Systems
    TWATARI
    YHAMADA
    ANISHIZAWA
    TNOTAKE
    NTAKEUCHI
    Plasma Science and Technology, 2006, 8 (01) : 105 - 109
  • [24] Nonlinear damping of zonal flows
    Koshkarov, O.
    Smolyakov, A. I.
    Mendonca, J. T.
    PLASMA PHYSICS REPORTS, 2016, 42 (08) : 769 - 772
  • [25] Fixed boundary toroidal plasma equilibria with toroidal flows
    Hu, Yanqiang
    Hu, Yemin
    Xiang, Nong
    PHYSICS OF PLASMAS, 2016, 23 (04)
  • [26] Nonlinear damping of zonal flows
    O. Koshkarov
    A. I. Smolyakov
    J. T. Mendonca
    Plasma Physics Reports, 2016, 42 : 769 - 772
  • [27] Geometry effects on Zonal flows
    Mahajan, S
    Weiland, J
    THEORY OF FUSION PLASMAS, 2000, : 281 - 291
  • [28] How eigenmode self-interaction affects zonal flows and convergence of tokamak core turbulence with toroidal system size
    Ajay, C. J.
    Brunner, Stephan
    Ben McMillan
    Ball, Justin
    Dominski, Julien
    Merlo, Gabriele
    JOURNAL OF PLASMA PHYSICS, 2020, 86 (05)
  • [29] Vortex dynamics and zonal flows
    Marcus, PS
    Kundu, T
    Lee, C
    PHYSICS OF PLASMAS, 2000, 7 (05) : 1630 - 1640
  • [30] Oscillations of zonal flows in stellarators
    Helander, P.
    Mishchenko, A.
    Kleiber, R.
    Xanthopoulos, P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (05)