Classification of Mammographic Breast Microcalcifications Using a Deep Convolutional Neural Network A BI-RADS-Based Approach

被引:16
|
作者
Schonenberger, Claudio [1 ]
Hejduk, Patryk [1 ]
Ciritsis, Alexander [1 ]
Marcon, Magda [1 ]
Rossi, Cristina [1 ]
Boss, Andreas [1 ]
机构
[1] Univ Hosp Zurich, Inst Diagnost & Intervent Radiol, Ramistr 100, CH-8091 Zurich, Switzerland
关键词
mammography; breast cancer; deep convolutional neural network; artificial intelligence; microcalcification; CARCINOMA IN-SITU; CANCER; CALCIFICATIONS; FEATURES; UPDATE; BIOPSY;
D O I
10.1097/RLI.0000000000000729
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose The goal of this retrospective cohort study was to investigate the potential of a deep convolutional neural network (dCNN) to accurately classify microcalcifications in mammograms with the aim of obtaining a standardized observer-independent microcalcification classification system based on the Breast Imaging Reporting and Data System (BI-RADS) catalog. Materials and Methods Over 56,000 images of 268 mammograms from 94 patients were labeled to 3 classes according to the BI-RADS standard: "no microcalcifications" (BI-RADS 1), "probably benign microcalcifications" (BI-RADS 2/3), and "suspicious microcalcifications" (BI-RADS 4/5). Using the preprocessed images, a dCNN was trained and validated, generating 3 types of models: BI-RADS 4 cohort, BI-RADS 5 cohort, and BI-RADS 4 + 5 cohort. For the final validation of the trained dCNN models, a test data set consisting of 141 images of 51 mammograms from 26 patients labeled according to the corresponding BI-RADS classification from the radiological reports was applied. The performances of the dCNN models were evaluated, classifying each of the mammograms and computing the accuracy in comparison to the classification from the radiological reports. For visualization, probability maps of the classification were generated. Results The accuracy on the validation set after 130 epochs was 99.5% for the BI-RADS 4 cohort, 99.6% for the BI-RADS 5 cohort, and 98.1% for the BI-RADS 4 + 5 cohort. Confusion matrices of the "real-world" test data set for the 3 cohorts were generated where the radiological reports served as ground truth. The resulting accuracy was 39.0% for the BI-RADS 4 cohort, 80.9% for BI-RADS 5 cohort, and 76.6% for BI-RADS 4 + 5 cohort. The probability maps exhibited excellent image quality with correct classification of microcalcification distribution. Conclusions The dCNNs can be trained to successfully classify microcalcifications on mammograms according to the BI-RADS classification system in order to act as a standardized quality control tool providing the expertise of a team of radiologists.
引用
收藏
页码:224 / 231
页数:8
相关论文
共 50 条
  • [41] Lung Disease Classification using Deep Convolutional Neural Network
    Tariq, Zeenat
    Shah, Sayed Khushal
    Lee, Yugyung
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 732 - 735
  • [42] Mammogram density classification using deep convolutional neural network
    Nithya, R.
    Santhi, B.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (01):
  • [43] Classification of mammographic breast density by the histogram approach using neural networks
    Goto, S
    Azuma, Y
    Sumimoto, T
    Eiho, S
    FIFTH INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND CONTROL TECHNOLOGY, 2003, 5253 : 508 - 511
  • [44] Lithological facies classification using deep convolutional neural network
    Imamverdiyev, Yadigar
    Sukhostat, Lyudmila
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 174 : 216 - 228
  • [45] The skin cancer classification using deep convolutional neural network
    Dorj, Ulzii-Orshikh
    Lee, Keun-Kwang
    Choi, Jae-Young
    Lee, Malrey
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) : 9909 - 9924
  • [46] The skin cancer classification using deep convolutional neural network
    Ulzii-Orshikh Dorj
    Keun-Kwang Lee
    Jae-Young Choi
    Malrey Lee
    Multimedia Tools and Applications, 2018, 77 : 9909 - 9924
  • [47] Dari Speech Classification Using Deep Convolutional Neural Network
    Dawodi, Mursal
    Baktash, Jawid Ahamd
    Wada, Tomohisa
    Alam, Najwa
    Joya, Mohammad Zarif
    2020 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS 2020), 2020, : 110 - 113
  • [48] Plant species classification using deep convolutional neural network
    Dyrmann, Mads
    Karstoft, Henrik
    Midtiby, Henrik Skov
    BIOSYSTEMS ENGINEERING, 2016, 151 : 72 - 80
  • [49] Accurate Oracle Classification Based on Deep Convolutional Neural Network
    Yang, Zhen
    Wang, Qiqi
    He, Xiuying
    Liu, Yang
    Yang, Fan
    Yin, Zhijian
    Yao, Chen
    2018 IEEE 18TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT), 2018, : 1188 - 1191
  • [50] Chromosome Classification with Convolutional Neural Network based Deep Learning
    Zhang, Wenbo
    Song, Sifan
    Bai, Tianming
    Zhao, Yanxin
    Ma, Fei
    Su, Jionglong
    Yu, Limin
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,