Sharp upper bounds for splitting of separatrices near a simple resonance

被引:2
|
作者
Rudnev, M [1 ]
Ten, V [1 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
来源
REGULAR & CHAOTIC DYNAMICS | 2004年 / 9卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1070/RD2004v009n03ABEH000282
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
General theory for the splitting of separatrices near simple resonances of near-Liouville-integrable Hamiltonian systems is developed in the convex real-analytic setting. A generic estimate [GRAPHICS] is proved for the Fourier coefficients of the splitting distance measure G(phi), phi epsilon T-n, describing the intersections of Lagrangian manifolds, asymptotic to invariant n-tori, epsilon being the perturbation parameter. The constants omega epsilon R-n, c(1) sigma > 0, c(2) epsilon R-n are characteristic of the given problem (the Hamiltonian and the resonance), cannot be improved and can be calculated explicitly, given an example. The theory allows for optimal parameter dependencies in the smallness condition for epsilon.
引用
收藏
页码:299 / 336
页数:38
相关论文
共 50 条
  • [21] Some sharp upper bounds on the spectral radius of graphs
    Feng, Lihua
    Li, Qiao
    Zhang, Xiao-Dong
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (04): : 989 - 997
  • [22] Sharp upper bounds for the density of some invariant measures
    Fornaro, Simona
    Fusco, Nicola
    Metafune, Giorgio
    Pallara, Diego
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 1145 - 1161
  • [23] Sharp Upper Bounds for the Balaban Index of Bicyclic Graphs
    Chen, Zengqiang
    Dehmer, Matthias
    Shi, Yongtang
    Yang, Hua
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2016, 75 (01) : 105 - 128
  • [24] Sharp upper bounds for a variational problem with singular perturbation
    Conti, Sergio
    De Lellis, Camillo
    MATHEMATISCHE ANNALEN, 2007, 338 (01) : 119 - 146
  • [26] SHARP UPPER BOUNDS FOR THE NUMBER OF SPANNING TREES OF A GRAPH
    Feng, Lihua
    Yu, Guihai
    Jiang, Zhengtao
    Ren, Lingzhi
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2008, 2 (02) : 255 - 259
  • [27] Sharp lower and upper bounds for the Gaussian rank of a graph
    Ben-David, Emanuel
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 139 : 207 - 218
  • [28] Sharp upper bounds for a variational problem with singular perturbation
    Sergio Conti
    Camillo De Lellis
    Mathematische Annalen, 2007, 338 : 119 - 146
  • [29] GENERAL SHARP UPPER BOUNDS ON THE TOTAL COALITION NUMBER
    Barat, Janos
    Blazsik, Zoltan l.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (04) : 1567 - 1584
  • [30] Sharp upper bounds for the capacity in the hyperbolic and Euclidean spaces
    Li, Haizhong
    Li, Ruixuan
    Xiong, Changwei
    ADVANCES IN NONLINEAR ANALYSIS, 2025, 14 (01)