On certain remarkable curves of genus five

被引:5
|
作者
Del Centina, A [1 ]
机构
[1] Univ Ferrara, Dept Math, I-44100 Ferrara, Italy
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2004年 / 15卷 / 03期
关键词
bielliptic curves of genus five; Weierstrass points of maximal weight; ramification points;
D O I
10.1016/S0019-3577(04)80003-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this note is twofold. First to show the existence of genus five curves having exactly twenty four Weierstrass points, which constitute the set of fixed points of three distinct elliptic involutions on them. Second to characterize these curves, in fact we Prove that all such curves are bielliptic double cover of Fermat's quartic.
引用
收藏
页码:339 / 346
页数:8
相关论文
共 50 条
  • [1] Geometry of Prym varieties for certain bielliptic curves of genus three and five
    Clingher, Adrian
    Malmendier, Andreas
    Shaska, Tony
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (05) : 1739 - 1784
  • [2] THE DETERMINATION OF INFLECTION POINTS OF CERTAIN REMARKABLE CURVES
    MURGULESCU, E
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1982, 27 (03): : 385 - 388
  • [3] ON THE GENUS OF CERTAIN DRINFELD MODULAR CURVES
    Kim, Chang Heon
    Jeon, Daeyeol
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (02): : 239 - 246
  • [4] Computing binary curves of genus five
    Dragutinovic, Dusan
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (04)
  • [5] On certain curves of genus three in characteristic two
    Jaime E. A. Rodriguez
    Oscar Paz la Torre
    Renato Vidal Martins
    Paulo Henrique Viana
    Bulletin of the Brazilian Mathematical Society, New Series, 2008, 39 : 137 - 155
  • [6] On certain curves of genus three in characteristic two
    Rodriguez, Jaime E. A.
    La Torre, Oscar Paz
    Martins, Renato Vidal
    Viana, Paulo Henrique
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2008, 39 (01): : 137 - 155
  • [7] Five-gonal curves of genus nine
    Coppens, M
    COLLECTANEA MATHEMATICA, 2005, 56 (01) : 21 - 26
  • [8] On the non-existence of certain curves of genus two
    Howe, EW
    COMPOSITIO MATHEMATICA, 2004, 140 (03) : 581 - 592
  • [9] The rationality of the moduli space of bielliptic curves of genus five
    Casnati, G
    delCentina, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1996, 28 : 356 - 362
  • [10] Gonality of non-Gorenstein curves of genus five
    Lia Feital
    Renato Vidal Martins
    Bulletin of the Brazilian Mathematical Society, New Series, 2014, 45 : 649 - 670