Achieving High Pseudocapacitance Anode by An In Situ Nanocrystallization Strategy for Ultrastable Sodium-Ion Batteries

被引:11
|
作者
He, Wei [1 ]
Chen, Ke [1 ]
Pathak, Rajesh [1 ]
Hummel, Matthew [2 ]
Lamsal, Buddhi Sagar [1 ]
Gu, Zhengrong [2 ]
Kharel, Parashu [3 ]
Wu, James J. [4 ]
Zhou, Yue [1 ]
机构
[1] South Dakota State Univ, Dept Elect Engn & Comp Sci, Brookings, SD 57007 USA
[2] South Dakota State Univ, Dept Agr & Biosyst Engn, Brookings, SD 57007 USA
[3] South Dakota State Univ, Dept Phys, Brookings, SD 57007 USA
[4] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA
关键词
anodes; tin-based materials; self-nanocrystallization; pseudocapacitance; sodium-ion batteries; CYCLING STABILITY; SN NANODOTS; PERFORMANCE; LITHIUM; SODIATION/DESODIATION; NANOPARTICLES; GRAPHITE; GRAPHENE; BINDER; OXIDE;
D O I
10.1021/acsami.1c04231
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Conversion/alloying type anodes have shown great promise for sodium-ion batteries (SIBs) because of their high theoretical capacity. However, the poor structural stability derived from the large volume expansion and short lifetime impedes their further practical applications. Herein, we report a novel anode with a pomegranate-like nanostructure of SnP2O7 particles homogeneously dispersed in the robust N-doped carbon matrix. For the first time, we make use of in situ self-nanocrystallization to generate ultrafine SnP2O7 particles with a short pathway of ions and electrons to promote the reaction kinetics. Ex situ transmission electron microscope (TEM) shows that the average particle size of SnP2O7 decreases from 66 to 20 nm successfully based on this unique nanoscale-engineering method. Therefore, the nanoparticles together with the N-doped carbon contribute a high pseudocapacitance contribution. Moreover, the N-doped carbon matrix forms strong interaction with the self-nanocrystallization ultrafine SnP2O7 particles, leading to a stable nanostructure without any particle aggregation under a long-cycle operation. Benefiting from these synergistic merits, the SnP2O7@C anode shows a high specific capacity of 403 mAh g(-1) at 200 mA g(-1) and excellent cycling stability (185 mAh g(-1) after 4000 cycles at 1000 mA g(-1)). This work presents a new route for the effective fabrication of advanced conversion/alloying anodes materials for SIBs.
引用
收藏
页码:22577 / 22585
页数:9
相关论文
共 50 条
  • [1] Construction of an Anode Material for Sodium-Ion Batteries with an Ultrastable Structure
    Wang, Le
    Feng, Yefeng
    Lin, Yu’an
    Liang, Weijie
    Zhan, Jingbei
    Feng, Zuyong
    Xiong, Deping
    Zhang, Hui
    He, Miao
    [J]. Langmuir, 2024, 40 (46) : 24644 - 24652
  • [2] Surface-Dominated Sodium Storage Towards High Capacity and Ultrastable Anode Material for Sodium-Ion Batteries
    Luo, Da
    Xu, Jing
    Guo, Qiubo
    Fang, Lingzhe
    Zhu, Xiaohui
    Xia, Qiuying
    Xia, Hui
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (47)
  • [3] An Ultrastable Anode for Long-Life Room-Temperature Sodium-Ion Batteries
    Yu, Haijun
    Ren, Yang
    Xiao, Dongdong
    Guo, Shaohua
    Zhu, Yanbei
    Qian, Yumin
    Gu, Lin
    Zhou, Haoshen
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (34) : 8963 - 8969
  • [4] High-Capacity Anode Materials for Sodium-Ion Batteries
    Kim, Youngjin
    Ha, Kwang-Ho
    Oh, Seung M.
    Lee, Kyu Tae
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (38) : 11980 - 11992
  • [5] High capacity anode materials for rechargeable sodium-ion batteries
    Stevens, DA
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) : 1271 - 1273
  • [6] Achieving a Deeply Desodiated Stabilized Cathode Material by the High Entropy Strategy for Sodium-ion Batteries
    Liu, Zhaoguo
    Liu, Rixin
    Xu, Sheng
    Tian, Jiaming
    Li, Jingchang
    Li, Haoyu
    Yu, Tao
    Chu, Shiyong
    M. D'Angelo, Anita
    Pang, Wei Kong
    Zhang, Liang
    Guo, Shaohua
    Zhou, Haoshen
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (29)
  • [7] High-mass-loading Sn-based anode boosted by pseudocapacitance for long-life sodium-ion batteries
    He, Wei
    Chen, Ke
    Pathak, Rajesh
    Hummel, Matthew
    Reza, Khan Mamun
    Ghimire, Nabin
    Pokharel, Jyotshna
    Lu, Shun
    Gu, Zhengrong
    Qiao, Qiquan
    Zhou, Yue
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 414
  • [8] Phosphorus: An Anode of Choice for Sodium-Ion Batteries
    Ni, Jiangfeng
    Li, Liang
    Lu, Jun
    [J]. ACS ENERGY LETTERS, 2018, 3 (05): : 1137 - 1144
  • [9] In situ microscopy and spectroscopy characterization of microsized Sn anode for sodium-ion batteries
    Daali, Amine
    Zhou, Xinwei
    Zhao, Chen
    Hwang, Inhui
    Yang, Zhenzhen
    Liu, Yuzi
    Amine, Rachid
    Sun, Cheng-Jun
    Otieno, Wilkistar
    Xu, Gui-Liang
    Amine, Khalil
    [J]. NANO ENERGY, 2023, 115
  • [10] Bismuth sulfide: A high-capacity anode for sodium-ion batteries
    Sun, Wenping
    Rui, Xianhong
    Zhang, Dan
    Jiang, Yinzhu
    Sun, Ziqi
    Liu, Huakun
    Dou, Shixue
    [J]. JOURNAL OF POWER SOURCES, 2016, 309 : 135 - 140