Mathematical theory of N-body quantum systems

被引:0
|
作者
Hunziker, W [1 ]
机构
[1] ETH Honggerberg, Inst Theoret Phys, CH-8093 Zurich, Switzerland
来源
HELVETICA PHYSICA ACTA | 1997年 / 71卷 / 01期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A short history of the subject is given at the end of the paper. The main part of the notes describes a new proof of asymptotic completeness for short-range forces, based on joint work with I.M. Sigal [21].
引用
收藏
页码:26 / 43
页数:18
相关论文
共 50 条
  • [42] ASYMPTOTIC COMPLETENESS OF LONG-RANGE N-BODY QUANTUM-SYSTEMS
    DEREZINSKI, J
    ANNALS OF MATHEMATICS, 1993, 138 (02) : 427 - 476
  • [43] COMPLETELY INTEGRABLE N-BODY QUANTUM-SYSTEMS IN 3-DIMENSIONS
    BARUT, AO
    KITAGAWARA, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (10): : 2581 - 2594
  • [44] General decomposition of radial functions on Rn and applications to N-body quantum systems
    Hainzl, C
    Seiringer, R
    LETTERS IN MATHEMATICAL PHYSICS, 2002, 61 (01) : 75 - 84
  • [45] On the spectral theory of dispersive N-body Hamiltonians
    Damak, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (01) : 35 - 48
  • [46] On weak KAM theory for N-body problems
    Maderna, Ezequiel
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 1019 - 1041
  • [47] Flexible Ansatz for N-Body Perturbation Theory
    Miranda-Quintana, Ramon Alain
    Kim, Taewon D.
    Lokhande, Rugwed A.
    Richer, M.
    Sanchez-Diaz, Gabriela
    Gaikwad, Pratiksha B.
    Ayers, Paul W.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (17): : 3458 - 3467
  • [48] REDUCTION OF A QUANTUM N-BODY PROBLEM TO AN (N-1)-BODY PROBLEM
    GIRARDEAU, MD
    PHYSICAL REVIEW A, 1983, 28 (06): : 3635 - 3636
  • [49] MULTIGRID METHODS FOR N-BODY GRAVITATIONAL SYSTEMS
    JESSOP, C
    DUNCAN, M
    CHAU, WY
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 115 (02) : 339 - 351
  • [50] Approach to equilibrium in N-body gravitational systems
    El-Zant, AA
    PHYSICAL REVIEW E, 1998, 58 (04): : 4152 - 4165