Phase-Equilibrium-Dominated Vapor-Liquid-Solid Growth Mechanism

被引:20
|
作者
He, Chengyu
Wang, Xizhang
Wu, Qiang
Hu, Zheng [1 ]
Ma, Yanwen
Fu, Jijiang
Chen, Yi
机构
[1] Nanjing Univ, Key Lab Mesoscop Chem MOE, Nanjing 210093, Peoples R China
关键词
NANOWIRE GROWTH; SEMICONDUCTOR NANOWIRES; EUTECTIC TEMPERATURE; SILICON NANOWIRES; SURFACE; CATALYST;
D O I
10.1021/ja910874x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The vapor-liquid-solid (VLS) growth model has been widely used to direct the growth of one-dimensional (1D) nanomaterials, but the origin of the proposed process has not been experimentally confirmed. Here we report the experimental evidence of the origin of VLS growth. Al69Ni31 alloyed particles are used as "catalysts" for growing AIN nanowires by nitridation reaction in N-2-NH3 at different temperatures. The nanowire growth occurs following the emergence of the catalyst droplets as revealed by in situ X-ray diffraction and thermal analysis. The physicochemical process involved has been elucidated by quantitative analysis on the evolution of the lattice parameters and relative contents of the nitridation products. These direct experimental results reveal that VLS growth of AIN nanowires is dominated by the phase equilibrium of the Al-Ni alloy catalyst. The in-depth insight into the VLS mechanism indicates the general validity of this growth model and may facilitate the rational design and controllable growth of 1D nanomaterials according to the corresponding phase diagrams.
引用
收藏
页码:4843 / 4847
页数:5
相关论文
共 50 条
  • [31] Doping nanowires grown by the vapor-liquid-solid mechanism
    Schwalbach, E. J.
    Voorhees, P. W.
    APPLIED PHYSICS LETTERS, 2009, 95 (06)
  • [32] Vapor-liquid-solid growth of vertically aligned InP nanowires by metalorganic vapor phase epitaxy
    Bhunia, S
    Kawamura, T
    Fujikawa, S
    Nakashima, H
    Furukawa, K
    Torimitsu, K
    Watanabe, Y
    THIN SOLID FILMS, 2004, 464 : 244 - 247
  • [33] Phase Field Model for Morphological Transition in Nanowire Vapor-Liquid-Solid Growth
    Wang, Yanming
    McIntyre, Paul C.
    Cai, Wei
    CRYSTAL GROWTH & DESIGN, 2017, 17 (04) : 2211 - 2217
  • [34] SiC nanowire vapor-liquid-solid growth using vapor-phase catalyst delivery
    Thirumalai, Rooban Venkatesh K. G.
    Krishnan, Bharat
    Davydov, Albert V.
    Merrett, J. Neil
    Koshka, Yaroslav
    JOURNAL OF MATERIALS RESEARCH, 2013, 28 (01) : 50 - 56
  • [35] Direct observation of vapor-liquid-solid nanowire growth
    Wu, YY
    Yang, PD
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (13) : 3165 - 3166
  • [36] Vapor-liquid-solid growth of germanium nanostructures on silicon
    Dailey, J.W., 1600, American Institute of Physics Inc. (96):
  • [37] Gas phase equilibrium limitations on the vapor-liquid-solid growth of epitaxial silicon nanowires using SiCl4
    Eichfeld, Sarah M.
    Shen, Haoting
    Eichfeld, Chad M.
    Mohney, Suzanne E.
    Dickey, Elizabeth C.
    Redwing, Joan M.
    JOURNAL OF MATERIALS RESEARCH, 2011, 26 (17) : 2207 - 2214
  • [38] Mechanism and control of sidewall growth and catalyst diffusion on oxide nanowire vapor-liquid-solid growth
    Nagashima, Kazuki
    Yanagida, Takeshi
    Oka, Keisuke
    Tanaka, Hidekazu
    Kawai, Tomoji
    APPLIED PHYSICS LETTERS, 2008, 93 (15)
  • [39] Vapor-liquid-solid growth of germanium nanostructures on silicon
    Dailey, JW
    Taraci, J
    Clement, T
    Smith, DJ
    Drucker, J
    Picraux, ST
    JOURNAL OF APPLIED PHYSICS, 2004, 96 (12) : 7556 - 7567
  • [40] Growth of ZnO nanostructures by vapor-liquid-solid method
    Zhao, Q. X.
    Klason, P.
    Willander, M.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 88 (01): : 27 - 30