Turnpike properties of optimal relaxed control problems☆

被引:5
|
作者
Lou, Hongwei [1 ,2 ]
Wang, Weihan [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, LMNS, Shanghai 200433, Peoples R China
[3] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
Turnpike property; relaxed control; maximum principle; TIME; DISSIPATIVITY; THEOREM;
D O I
10.1051/cocv/2018064
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, three kinds of turnpike properties for optimal relaxed control problems are considered. Under some convexity and controllability assumptions, we obtain the uniform boundedness of the optimal pairs and the adjoint functions. On the basis, we prove the integral turnpike property, the mean square turnpike property and the exponential turnpike property, respectively.
引用
收藏
页数:36
相关论文
共 50 条
  • [41] Indefinite Linear Quadratic Optimal Control: Strict Dissipativity and Turnpike Properties
    Berberich, Julian
    Koehler, Johannes
    Allgoewer, Frank
    Mueller, Matthias A.
    IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (03): : 399 - 404
  • [42] CONVERGENT COMPUTATIONAL METHOD FOR RELAXED OPTIMAL-CONTROL PROBLEMS
    ROUBICEK, T
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 69 (03) : 589 - 603
  • [43] APPROXIMATION OF RELAXED NONLINEAR PARABOLIC OPTIMAL-CONTROL PROBLEMS
    CHRYSSOVERGHI, I
    BACOPOULOS, A
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 77 (01) : 31 - 50
  • [44] A COMPUTATIONAL METHOD FOR A CLASS OF OPTIMAL RELAXED CONTROL-PROBLEMS
    TEO, KL
    GOH, CJ
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 60 (01) : 117 - 133
  • [45] Discrete relaxed method for semilinear parabolic optimal control problems
    Chryssoverghi, I
    Coletsos, J
    Kokkinis, B
    CONTROL AND CYBERNETICS, 1999, 28 (02): : 157 - 176
  • [46] COMPARISON BETWEEN OPTIMAL COSTS FOR RELAXED AND NON-RELAXED CONTROL-PROBLEMS WITH JUMPS
    MAZLIAK, L
    SYSTEMS & CONTROL LETTERS, 1991, 17 (04) : 315 - 319
  • [47] Turnpike Properties for Stochastic Linear-Quadratic Optimal Control Problems (vol 43, pg.no: 999, 2022)
    Sun, Jingrui
    Wang, Hanxiao
    Yong, Jiongmin
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (01) : 163 - 163
  • [48] Turnpike Properties in Discrete-Time Mixed-Integer Optimal Control
    Faulwasser, Timm
    Murray, Alexander
    IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (03): : 704 - 709
  • [49] Turnpike in Lipschitz-nonlinear optimal control
    Esteve-Yague, Carlos
    Geshkovski, Borjan
    Pighin, Dario
    Zuazua, Enrique
    NONLINEARITY, 2022, 35 (04) : 1652 - 1701
  • [50] TURNPIKE IN OPTIMAL CONTROL OF PDES, RESNETS, AND BEYOND
    Geshkovski, Borjan
    Zuazua, Enrique
    arXiv, 2022,