A remark on heteroclinic bifurcations near steady state/pitchfork bifurcations

被引:3
|
作者
Kirk, V
Knobloch, E
机构
[1] Univ Auckland, Dept Math, Auckland, New Zealand
[2] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
来源
基金
英国工程与自然科学研究理事会;
关键词
heteroclinic bifurcation; saddle-node/Hopf bifurcation; steady state/heteroclinic bifurcation; nonhyperbolic fixed points;
D O I
10.1142/S0218127404011752
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a bifurcation that occurs in some two-dimensional vector fields, namely a codimension-one bifurcation in which there is simultaneously the creation of a pair of equilibria via a steady state bifurcation and the destruction of a large amplitude periodic orbit. We show that this phenomenon may occur in an unfolding of the saddle-node/pitchfork normal form equations, although not near the saddle-node/pitchfork instability. By construction and analysis of a return map, we show that the codimension-one bifurcation emerges from a codimension-two point at which there is a heteroclinic bifurcation between two saddle equilibria, one hyperbolic and the other nonhyperbolic. We find the same phenomenon occurs in the normal form equations for the hysteresis/pitchfork bifurcation, in this case arbitrarily close to the instability, and show there are restrictions regarding the way in which such dynamics can occur near pitchfork/pitchfork bifurcations. These conclusions carry over to analogous phenomena in normal forms for steady state/Hopf bifurcations.
引用
收藏
页码:3855 / 3869
页数:15
相关论文
共 50 条
  • [31] The Elder problem - Bifurcations and steady state solutions
    Johannsen, K
    COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2, PROCEEDINGS, 2002, 47 : 485 - 492
  • [32] Resonance Bifurcations of Robust Heteroclinic Networks
    Kirk, Vivien
    Postlethwaite, Claire
    Rucklidge, Alastair M.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (04): : 1360 - 1401
  • [33] Stable and non-symmetric pitchfork bifurcations
    Enrique Pujals
    Michael Shub
    Yun Yang
    Science China Mathematics, 2020, 63 : 1837 - 1852
  • [34] Stability of heteroclinic cycles in transverse bifurcations
    Lohse, Alexander
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 310 : 95 - 103
  • [35] Amplified steady state bifurcations in feedforward networks
    von der Grachf, Soeren
    Nijholt, Eddie
    Rink, Bob
    NONLINEARITY, 2022, 35 (04) : 2073 - 2120
  • [36] NONAUTONOMOUS TRANSCRITICAL AND PITCHFORK BIFURCATIONS IN IMPULSIVE SYSTEMS
    Akhmet, M. U.
    Kashkynbayev, A.
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (03) : 737 - 748
  • [37] Stable and non-symmetric pitchfork bifurcations
    Pujals, Enrique
    Shub, Michael
    Yang, Yun
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (09) : 1837 - 1852
  • [38] Effects of Symmetry on Bifurcations in Coupled Pitchfork Systems
    Kim, Youngtae
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 55 (06) : 2301 - 2306
  • [39] Bifurcations of Nontwisted Heteroclinic Loop with Resonant Eigenvalues
    Jin, Yinlai
    Zhu, Xiaowei
    Guo, Zheng
    Xu, Han
    Zhang, Liqun
    Ding, Benyan
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [40] Exponential dichotomies and heteroclinic bifurcations in degenerate cases
    曾唯尧
    井竹君
    Science China Mathematics, 1995, (06) : 653 - 661