Modeling a Coronal Mass Ejection from an Extended Filament Channel. I. Eruption and Early Evolution

被引:15
|
作者
Lynch, Benjamin J. [1 ]
Palmerio, Erika [1 ,2 ,3 ]
DeVore, C. Richard [4 ]
Kazachenko, Maria D. [5 ,6 ]
Dahlin, Joel T. [4 ]
Pomoell, Jens [3 ]
Kilpua, Emilia K. J. [3 ]
机构
[1] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[2] Univ Corp Atmospheric Res, CPAESS, Boulder, CO 80301 USA
[3] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland
[4] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA
[5] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80305 USA
[6] Univ Colorado, Natl Solar Observ, Boulder, CO 80303 USA
来源
ASTROPHYSICAL JOURNAL | 2021年 / 914卷 / 01期
基金
芬兰科学院; 欧洲研究理事会;
关键词
MAGNETIC-HELICITY; ENERGY BUILDUP; CURRENT SHEETS; SOLAR; RECONNECTION; DYNAMICS; PROMINENCE; CONDENSATION; ONSET; CMES;
D O I
10.3847/1538-4357/abf9a9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present observations and modeling of the magnetic field configuration, morphology, and dynamics of a large-scale, high-latitude filament eruption observed by the Solar Dynamics Observatory. We analyze the 2015 July 9-10 filament eruption and the evolution of the resulting coronal mass ejection (CME) through the solar corona. The slow streamer-blowout CME leaves behind an elongated post-eruption arcade above the extended polarity inversion line that is only poorly visible in extreme ultraviolet (EUV) disk observations and does not resemble a typical bright flare-loop system. Magnetohydrodynamic (MHD) simulation results from our data-inspired modeling of this eruption compare favorably with the EUV and white-light coronagraph observations. We estimate the reconnection flux from the simulation's flare-arcade growth and examine the magnetic-field orientation and evolution of the erupting prominence, highlighting the transition from an erupting sheared-arcade filament channel into a streamer-blowout flux-rope CME. Our results represent the first numerical modeling of a global-scale filament eruption where multiple ambiguous and complex observational signatures in EUV and white light can be fully understood and explained with the MHD simulation. In this context, our findings also suggest that the so-called stealth CME classification, as a driver of unexpected or "problem" geomagnetic storms, belongs more to a continuum of observable/nonobservable signatures than to separate or distinct eruption processes.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Evolution of the Coronal Cavity From the Quiescent to Eruptive Phase Associated with Coronal Mass Ejection
    Sarkar, Ranadeep
    Srivastava, Nandita
    Mierla, Marilena
    West, Matthew J.
    D'Huys, Elke
    ASTROPHYSICAL JOURNAL, 2019, 875 (02):
  • [22] EARLY EVOLUTION OF AN ENERGETIC CORONAL MASS EJECTION AND ITS RELATION TO EUV WAVES
    Liu, Rui
    Wang, Yuming
    Shen, Chenglong
    ASTROPHYSICAL JOURNAL, 2014, 797 (01):
  • [23] CORONAL MASS EJECTION RECONSTRUCTION FROM THREE VIEWPOINTS VIA SIMULATION MORPHING. I. THEORY AND EXAMPLES
    Frazin, Richard A.
    ASTROPHYSICAL JOURNAL, 2012, 761 (01):
  • [24] Comprehensive study of the initiation and early evolution of a coronal mass ejection from ultraviolet and white-light data
    Bemporad, A.
    Raymond, J.
    Poletto, G.
    Romoli, M.
    ASTROPHYSICAL JOURNAL, 2007, 655 (01): : 576 - 590
  • [25] CONSTRAINTS ON CORONAL MASS EJECTION EVOLUTION FROM IN SITU OBSERVATIONS OF IONIC CHARGE STATES
    Gruesbeck, Jacob R.
    Lepri, Susan T.
    Zurbuchen, Thomas H.
    Antiochos, Spiro K.
    ASTROPHYSICAL JOURNAL, 2011, 730 (02):
  • [26] THE FORMATION AND EARLY EVOLUTION OF A CORONAL MASS EJECTION AND ITS ASSOCIATED SHOCK WAVE ON 2014 JANUARY 8
    Wan, Linfeng
    Cheng, Xin
    Shi, Tong
    Su, Wei
    Ding, M. D.
    ASTROPHYSICAL JOURNAL, 2016, 826 (02):
  • [27] 1997 May 12 coronal mass ejection event. I. A simplified model of the preeruptive magnetic structure
    Titov, V. S.
    Mikic, Z.
    Linker, J. A.
    Lionello, R.
    ASTROPHYSICAL JOURNAL, 2008, 675 (02): : 1614 - 1628
  • [28] Energetic particle evolution during coronal mass ejection passage from 0.3 to 1 AU
    Joyce, C. J.
    McComas, D. J.
    Schwadron, N. A.
    Vourlidas, A.
    Christian, E. R.
    McNutt, R. L.
    Cohen, C. M. S.
    Leske, R. A.
    Mewaldt, R. A.
    Stone, E. C.
    Mitchell, D. G.
    Hill, M. E.
    Roelof, E. C.
    Allen, R. C.
    Szalay, J. R.
    Rankin, J. S.
    Desai, M., I
    Giacalone, J.
    Matthaeus, W. H.
    Niehof, J. T.
    de Wet, W.
    Winslow, R. M.
    Bale, S. D.
    Kasper, J. C.
    ASTRONOMY & ASTROPHYSICS, 2021, 651
  • [29] Flare-associated coronal disturbances observed with the Norikura Green-Line Imaging System. I. A coronal mass ejection onset
    Hori, K
    Ichimoto, K
    Sakurai, T
    Sano, I
    Nishino, Y
    ASTROPHYSICAL JOURNAL, 2005, 618 (02): : 1001 - 1011
  • [30] NUMERICAL INVESTIGATION OF A CORONAL MASS EJECTION FROM AN ANEMONE ACTIVE REGION: RECONNECTION AND DEFLECTION OF THE 2005 AUGUST 22 ERUPTION
    Lugaz, N.
    Downs, C.
    Shibata, K.
    Roussev, I. I.
    Asai, A.
    Gombosi, T. I.
    ASTROPHYSICAL JOURNAL, 2011, 738 (02):