Large deviations of local times of Levy processes

被引:3
|
作者
Blackburn, R [1 ]
机构
[1] IBM Corp, Poughkeepsie, NY 12601 USA
关键词
Levy process; local time; large deviations;
D O I
10.1023/A:1007866713661
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For X(t) a real-valued symmetric Levy process. its characteristic function is E(e(i lambda X(t))) = exp( - t psi(lambda)). Assume that psi is regularly varying at infinity with index 1 < beta less than or equal to 2. Let L-t(x) denote the local time of X(t) and L-t* = sup(x is an element of R) L-t(x). Estimates are obtained for P(L-t(0) greater than or equal to y) and P(L-t* greater than or equal to y) as y --> infinity and t fixed.
引用
收藏
页码:825 / 842
页数:18
相关论文
共 50 条
  • [21] APPLICATION OF THE ENTROPY FOR THE CONTINUITY OF THE LOCAL-TIMES OF LEVY PROCESSES
    BARLOW, MT
    HAWKES, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (05): : 237 - 239
  • [22] SMALL DEVIATIONS OF GENERAL LEVY PROCESSES
    Aurzada, Frank
    Dereich, Steffen
    ANNALS OF PROBABILITY, 2009, 37 (05): : 2066 - 2092
  • [23] LP moduli of continuity of Gaussian processes and local times of symmetric Levy processes
    Marcus, Michael B.
    Rosen, Jay
    ANNALS OF PROBABILITY, 2008, 36 (02): : 594 - 622
  • [24] SAMPLE PATH LARGE DEVIATIONS FOR LEVY PROCESSES AND RANDOM WALKS WITH WEIBULL INCREMENTS
    Bazhba, Mihail
    Blanchet, Jose
    Rhee, Chang-Han
    Zwart, Bert
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (06): : 2695 - 2739
  • [25] Regularity of the cauchy principal value of the local times of some Levy processes
    Bertoin, J
    Caballero, ME
    BULLETIN DES SCIENCES MATHEMATIQUES, 1999, 123 (01): : 47 - 58
  • [26] INVARIANCE PRINCIPLES FOR LOCAL TIMES AT THE MAXIMUM OF RANDOM WALKS AND LEVY PROCESSES
    Chaumont, L.
    Doney, R. A.
    ANNALS OF PROBABILITY, 2010, 38 (04): : 1368 - 1389
  • [27] Occupation times of Levy processes
    Wu, Lan
    Zhang, Xiao
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2021, 8 (03)
  • [28] SAMPLE PATH LARGE DEVIATIONS FOR LEVY PROCESSES AND RANDOM WALKS WITH REGULARLY VARYING INCREMENTS
    Rhee, Chang-Han
    Blanchet, Jose
    Zwart, Bert
    ANNALS OF PROBABILITY, 2019, 47 (06): : 3551 - 3605
  • [29] Large deviations for weighted means of random vectors defined in terms of suitable Levy processes
    Giuliano, Rita
    Macci, Claudio
    Pacchiarotti, Barbara
    STATISTICS & PROBABILITY LETTERS, 2019, 150 : 13 - 22
  • [30] Large deviations for the local times of a random walk among random conductances
    Koenig, Wolfgang
    Salvi, Michele
    Wolff, Tilman
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 11