Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming

被引:11
|
作者
Andreani, R. [1 ]
Haeser, G. [2 ]
Mito, L. M. [2 ]
Ramirez, H. [3 ,4 ]
Santos, D. O. [5 ]
Silveira, T. P. [2 ]
机构
[1] Univ Estadual Campinas, Dept Appl Math, Campinas, SP, Brazil
[2] Univ Sao Paulo, Dept Appl Math, Sao Paulo, SP, Brazil
[3] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[4] Univ Chile, Ctr Modelamiento Matemat CNRS UMI 2807, Santiago, Chile
[5] Univ Fed Sao Paulo, Inst Sci & Technol, Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Constraint qualifications; Optimality conditions; Second-order cone programming; Semidefinite programming; Global convergence;
D O I
10.1007/s11590-021-01737-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The constant rank constraint qualification, introduced by Janin in 1984 for nonlinear programming, has been extensively used for sensitivity analysis, global convergence of first- and second-order algorithms, and for computing the directional derivative of the value function. In this paper we discuss naive extensions of constant rank-type constraint qualifications to second-order cone programming and semidefinite programming, which are based on the Approximate-Karush-Kuhn-Tucker necessary optimality condition and on the application of the reduction approach. Our definitions are strictly weaker than Robinson's constraint qualification, and an application to the global convergence of an augmented Lagrangian algorithm is obtained.
引用
收藏
页码:589 / 610
页数:22
相关论文
共 50 条
  • [1] Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming
    R. Andreani
    G. Haeser
    L. M. Mito
    H. Ramírez
    D. O. Santos
    T. P. Silveira
    Optimization Letters, 2022, 16 : 589 - 610
  • [2] First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition
    Andreani, Roberto
    Haeser, Gabriel
    Mito, Leonardo M.
    Ramirez, Hector
    Silveira, Thiago P.
    MATHEMATICAL PROGRAMMING, 2023, 202 (1-2) : 473 - 513
  • [3] First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition
    Roberto Andreani
    Gabriel Haeser
    Leonardo M. Mito
    Héctor Ramírez
    Thiago P. Silveira
    Mathematical Programming, 2023, 202 : 473 - 513
  • [4] Sequential Constant Rank Constraint Qualifications for Nonlinear Semidefinite Programming with Algorithmic Applications
    Roberto Andreani
    Gabriel Haeser
    Leonardo M. Mito
    Héctor Ramírez
    Set-Valued and Variational Analysis, 2023, 31
  • [5] Sequential Constant Rank Constraint Qualifications for Nonlinear Semidefinite Programming with Algorithmic Applications
    Andreani, Roberto
    Haeser, Gabriel
    Mito, Leonardo M.
    Ramirez, Hector
    SET-VALUED AND VARIATIONAL ANALYSIS, 2023, 31 (01)
  • [6] Second order cone programming relaxation of a positive semidefinite constraint
    Kim, S
    Kojima, M
    Yamashita, M
    OPTIMIZATION METHODS & SOFTWARE, 2003, 18 (05): : 535 - 541
  • [7] On the Weak Second-order Optimality Condition for Nonlinear Semidefinite and Second-order Cone Programming
    Fukuda, Ellen H.
    Haeser, Gabriel
    Mito, Leonardo M.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2023, 31 (02)
  • [8] On the Weak Second-order Optimality Condition for Nonlinear Semidefinite and Second-order Cone Programming
    Ellen H. Fukuda
    Gabriel Haeser
    Leonardo M. Mito
    Set-Valued and Variational Analysis, 2023, 31
  • [9] Second-order cone programming
    F. Alizadeh
    D. Goldfarb
    Mathematical Programming, 2003, 95 : 3 - 51
  • [10] Second-order cone programming
    Alizadeh, F
    Goldfarb, D
    MATHEMATICAL PROGRAMMING, 2003, 95 (01) : 3 - 51