Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming

被引:11
|
作者
Andreani, R. [1 ]
Haeser, G. [2 ]
Mito, L. M. [2 ]
Ramirez, H. [3 ,4 ]
Santos, D. O. [5 ]
Silveira, T. P. [2 ]
机构
[1] Univ Estadual Campinas, Dept Appl Math, Campinas, SP, Brazil
[2] Univ Sao Paulo, Dept Appl Math, Sao Paulo, SP, Brazil
[3] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[4] Univ Chile, Ctr Modelamiento Matemat CNRS UMI 2807, Santiago, Chile
[5] Univ Fed Sao Paulo, Inst Sci & Technol, Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Constraint qualifications; Optimality conditions; Second-order cone programming; Semidefinite programming; Global convergence;
D O I
10.1007/s11590-021-01737-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The constant rank constraint qualification, introduced by Janin in 1984 for nonlinear programming, has been extensively used for sensitivity analysis, global convergence of first- and second-order algorithms, and for computing the directional derivative of the value function. In this paper we discuss naive extensions of constant rank-type constraint qualifications to second-order cone programming and semidefinite programming, which are based on the Approximate-Karush-Kuhn-Tucker necessary optimality condition and on the application of the reduction approach. Our definitions are strictly weaker than Robinson's constraint qualification, and an application to the global convergence of an augmented Lagrangian algorithm is obtained.
引用
收藏
页码:589 / 610
页数:22
相关论文
共 50 条
  • [31] A homotopy method for nonlinear second-order cone programming
    Li Yang
    Bo Yu
    YanXi Li
    Numerical Algorithms, 2015, 68 : 355 - 365
  • [32] A homotopy method for nonlinear second-order cone programming
    Yang, Li
    Yu, Bo
    Li, YanXi
    NUMERICAL ALGORITHMS, 2015, 68 (02) : 355 - 365
  • [33] A Combined Newton Method for Second-Order Cone Programming
    Chi, Xiaoni
    Peng, Jin
    SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009), 2009, 56 : 605 - 612
  • [34] Embedded Second-Order Cone Programming with Radar Applications
    Mountcastle, Paul
    Henretty, Tom
    Naqvi, Aale
    Lethin, Richard
    2015 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2015,
  • [35] Restoration of matrix fields by second-order cone programming
    G. Steidl
    S. Setzer
    B. Popilka
    B. Burgeth
    Computing, 2007, 81 : 161 - 178
  • [36] Code Generation for Embedded Second-Order Cone Programming
    Chu, Eric
    Parikh, Neal
    Domahidi, Alexander
    Boyd, Stephen
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 1547 - 1552
  • [37] Feature Scaling via Second-Order Cone Programming
    Liang, Zhizheng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [38] Stochastic second-order cone programming: Applications models
    Alzalg, Baha M.
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) : 5122 - 5134
  • [39] Perturbation analysis of second-order cone programming problems
    J. Frédéric Bonnans
    Héctor Ramírez C.
    Mathematical Programming, 2005, 104 : 205 - 227
  • [40] Perturbation analysis of second-order cone programming problems
    Bonnans, JF
    Ramírez, CH
    MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) : 205 - 227