Integer optimization models of Al planning problems

被引:10
|
作者
Kautz, H
Walser, JP
机构
[1] AT&T Shannon Labs, Florham Pk, NJ 07932 USA
[2] i2 Technol, Dallas, TX 75234 USA
来源
KNOWLEDGE ENGINEERING REVIEW | 2000年 / 15卷 / 01期
关键词
Branch-and-bound integer programming methods - Integer local search algorithms;
D O I
10.1017/S0269888900001053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes ILP-PLAN, a framework for solving AI planning problems represented as integer linear programs. ILP-PLAN extends the planning as satisfiability framework to handle plans with resources, action costs, and complex objective functions. We show that challenging planning problems can be effectively solved using both traditional branch-and-bound integer programming solvers and efficient new integer local search algorithms. ILP-PLAN can find better quality solutions for a set of hard benchmark logistics planning problems than had been found by any earlier system.
引用
收藏
页码:101 / 117
页数:17
相关论文
共 50 条