Curcumin: Novel Treatment in Neonatal Hypoxic-Ischemic Brain Injury

被引:27
|
作者
Rocha-Ferreira, Eridan [1 ,2 ]
Sisa, Claudia [1 ]
Bright, Sarah [1 ]
Fautz, Tessa [1 ]
Harris, Michael [1 ]
Riquelme, Ingrid Contreras [1 ]
Agwu, Chinedu [1 ]
Kurulday, Tugce [1 ,3 ]
Mistry, Beenaben [1 ]
Hill, Daniel [1 ,4 ]
Lange, Sigrun [5 ]
Hristova, Mariya [1 ]
机构
[1] UCL, Dept Maternal & Fetal Med, Perinatal Brain Repair Grp, Inst Womens Hlth, London, England
[2] Univ Gothenburg, Dept Neurosci & Physiol, Sahlgrenska Acad, Gothenburg, Sweden
[3] Izmir Inst Technol, Dept Mol Biol & Genet, Izmir, Turkey
[4] UCL, Dept Visual Neurosci, Glaucoma & Retinal Neurodegenerat Grp, Inst Ophthalmol, London, England
[5] Univ Westminster, Sch Life Sci, Tissue Architecture & Regenerat Res Grp, London, England
来源
FRONTIERS IN PHYSIOLOGY | 2019年 / 10卷
基金
英国生物技术与生命科学研究理事会;
关键词
curcumin; hypoxia; ischemia; neuroprotection; neonate; oxidative stress; MITOCHONDRIAL STAT3; TURMERIC CURCUMA; OXIDATIVE STRESS; NITRIC-OXIDE; STEM-CELLS; RAT-BRAIN; DIFFERENTIATION; ACTIVATION; PROHIBITIN; EXPRESSION;
D O I
10.3389/fphys.2019.01351
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Hypoxic-ischemic encephalopathy (HIE) is a major cause of mortality and morbidity in neonates, with an estimated global incidence of 3/1,000 live births. HIE brain damage is associated with an inflammatory response and oxidative stress, resulting in the activation of cell death pathways. At present, therapeutic hypothermia is the only clinically approved treatment available for HIE. This approach, however, is only partially effective. Therefore, there is an unmet clinical need for the development of novel therapeutic interventions for the treatment of HIE. Curcumin is an antioxidant reactive oxygen species scavenger, with reported anti-tumor and anti-inflammatory activity. Curcumin has been shown to attenuate mitochondrial dysfunction, stabilize the cell membrane, stimulate proliferation, and reduce injury severity in adult models of spinal cord injury, cancer, and cardiovascular disease. The role of curcumin in neonatal HIE has not been widely studied due to its low bioavailability and limited aqueous solubility. The aim of this study was to investigate the effect of curcumin treatment in neonatal HIE, including time of administration and dose-dependent effects. Our results indicate that curcumin administration prior to HIE in neonatal mice elevated cell and tissue loss, as well as glial activation compared to HI alone. However, immediate post-treatment with curcumin was significantly neuroprotective, reducing grey and white matter tissue loss, TUNEL+ cell death, microglia activation, reactive astrogliosis, and iNOS oxidative stress when compared to vehicle-treated littermates. This effect was dose-dependent, with 200 mu g/g body weight as the optimal dose-regimen, and was maintained when curcumin treatment was delayed by 60 or 120 min post-HI. Cell proliferation measurements showed no changes between curcumin and HI alone, suggesting that the protective effects of curcumin on the neonatal brain following HI are most likely due to curcumin's anti-inflammatory and antioxidant properties, as seen in the reduced glial and iNOS activity. In conclusion, this study suggests curcumin as a potent neuroprotective agent with potential for the treatment of HIE. The delayed application of curcumin further increases its clinical relevance.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [21] The effects of dantrolene on hypoxic-ischemic injury in the neonatal rat brain
    Gwak, Mijeung
    Park, Pyonghwan
    Kim, Kisoo
    Lim, Keunho
    Jeong, Sungmoon
    Baek, Chongwha
    Lee, Jonghwan
    ANESTHESIA AND ANALGESIA, 2008, 106 (01): : 227 - 233
  • [22] NADPH-oxidase in neonatal hypoxic-ischemic brain injury
    Sävman, K
    Hedtjärn, A
    Karlsson, A
    Hagberg, H
    DEVELOPMENTAL NEUROSCIENCE, 2005, 27 (2-4) : 265 - 266
  • [23] Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats
    Lai, Pei Chun
    Huang, Yen Ta
    Wu, Chia Chen
    Lai, Ching-Jung
    Wang, Pen Jung
    Chiu, Ted H.
    JOURNAL OF BIOMEDICAL SCIENCE, 2011, 18
  • [24] Systemic Evaluation of Hypoxic-Ischemic Brain Injury in Neonatal Rats
    Ai-Hua Zhu
    Yan-Rong Hu
    Wei Liu
    Feng Gao
    Jian-Xin Li
    Li-Hui Zhao
    Gang Chen
    Cell Biochemistry and Biophysics, 2014, 69 : 295 - 301
  • [25] EFFECTS OF DEXAMETHASONE IN HYPOXIC-ISCHEMIC BRAIN INJURY IN THE NEONATAL RAT
    ALTMAN, DI
    YOUNG, RSK
    YAGEL, SK
    BIOLOGY OF THE NEONATE, 1984, 46 (03): : 149 - 156
  • [26] Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats
    Pei Chun Lai
    Yen Ta Huang
    Chia Chen Wu
    Ching-Jung Lai
    Pen Jung Wang
    Ted H Chiu
    Journal of Biomedical Science, 18
  • [27] PROTON SPECTROSCOPY OF THE NEONATAL BRAIN FOLLOWING HYPOXIC-ISCHEMIC INJURY
    PEDEN, CJ
    RUTHERFORD, MA
    SARGENTONI, J
    COX, IJ
    BRYANT, DJ
    DUBOWITZ, LMS
    DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY, 1993, 35 (06): : 502 - 510
  • [28] Effect of oxymatrine on hypoxic-ischemic brain injury in neonatal rats
    Wei, Chao
    Zhao, Shujing
    Diao, Ruiqing
    He, Liang
    Wang, Weizhan
    Li, Aihuan
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2021, 20 (06) : 1211 - 1216
  • [29] A RAT MODEL OF SEVERE NEONATAL HYPOXIC-ISCHEMIC BRAIN INJURY
    SCHWARTZ, PH
    MASSARWEH, WF
    VINTERS, HV
    WASTERLAIN, CG
    STROKE, 1992, 23 (04) : 539 - 546
  • [30] Plasma Biomarkers of Brain Injury in Neonatal Hypoxic-Ischemic Encephalopathy
    Massaro, An N.
    Wu, Yvonne W.
    Bammler, Theo K.
    Comstock, Bryan
    Mathur, Amit
    McKinstry, Robert C.
    Chang, Taeun
    Mayock, Dennis E.
    Mulkey, Sarah B.
    Van Meurs, Krisa
    Juul, Sandra
    JOURNAL OF PEDIATRICS, 2018, 194 : 67 - +