Retinal image analysis to detect and quantify lesions associated with diabetic retinopathy

被引:0
|
作者
Sánchez, CI [1 ]
Hornero, R [1 ]
López, MI [1 ]
Poza, J [1 ]
机构
[1] Univ Valladolid, Dept Teor Senal & Comun, ETSI Telecomun, Valladolid, Spain
关键词
diabetic retinopathy; hard exudates; image processing; retinal images;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An automatic method to detect hard exudates, a lesion associated with diabetic retinopathy, is proposed. The algorithm found on their color, using a statistical classification, and their sharp edges, applying an edge detector, to localize them. A sensitivity of 79.62% with a mean number of 3 false positives per image is obtained in a database of 20 retinal image with variable color, brightness and quality. In that way, we evaluate the robustness of the method in order to make adequate to a clinical environment. Further efforts will be done to improve its performance.
引用
收藏
页码:1624 / 1627
页数:4
相关论文
共 50 条
  • [1] Retinal image analysis to detect and quantify lesions associated with diabetic retinopathy
    Lopez, M
    Sanchez, C
    Hornero, R
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2003, 44 : U417 - U417
  • [2] Retinal Vessel Analysis as a Tool to Quantify Risk of Diabetic Retinopathy
    Cheung, Ning
    Wong, Tien Y.
    [J]. ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY, 2012, 1 (04): : 240 - 244
  • [3] Automated Retinal Image Analysis for Diabetic Retinopathy in Telemedicine
    Sim, Dawn A.
    Keane, Pearse A.
    Tufail, Adnan
    Egan, Catherine A.
    Aiello, Lloyd Paul
    Silva, Paolo S.
    [J]. CURRENT DIABETES REPORTS, 2015, 15 (03)
  • [4] Crowdsourcing and Automated Retinal Image Analysis for Diabetic Retinopathy
    Mudie, Lucy I.
    Wang, Xueyang
    Friedman, David S.
    Brady, Christopher J.
    [J]. CURRENT DIABETES REPORTS, 2017, 17 (11)
  • [5] Automated Retinal Image Analysis for Diabetic Retinopathy in Telemedicine
    Dawn A. Sim
    Pearse A. Keane
    Adnan Tufail
    Catherine A. Egan
    Lloyd Paul Aiello
    Paolo S. Silva
    [J]. Current Diabetes Reports, 2015, 15
  • [6] Crowdsourcing and Automated Retinal Image Analysis for Diabetic Retinopathy
    Lucy I. Mudie
    Xueyang Wang
    David S. Friedman
    Christopher J. Brady
    [J]. Current Diabetes Reports, 2017, 17
  • [7] Diagnosis of diabetic retinopathy by employing image processing technique to detect exudates in retinal images
    Franklin, Sundararaj Wilfred
    Rajan, Samuelnadar Edward
    [J]. IET IMAGE PROCESSING, 2014, 8 (10) : 601 - 609
  • [8] Construction of benchmark retinal image database for diabetic retinopathy analysis
    Kaur, Jaskirat
    Mittal, Deepti
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2020, 234 (09) : 1036 - 1048
  • [9] Distribution of retinal microaneurysms in diabetic retinopathy using automated retinal image analysis
    Pitts, S.
    Philip, S.
    Prescott, G.
    Ahmed, A.
    Xu, J.
    Staff, R.
    Sharp, P.
    Olson, J.
    [J]. DIABETIC MEDICINE, 2018, 35 : 182 - 182
  • [10] PROLIFERATIVE DIABETIC RETINOPATHY - EVOLUTION OF RETINAL LESIONS
    DOBREE, JH
    [J]. BRITISH JOURNAL OF OPHTHALMOLOGY, 1964, 48 (12) : 637 - &