ON THE DEAD-CORE PROBLEM FOR THE p-LAPLACE EQUATION WITH A STRONG ABSORPTION

被引:0
|
作者
Guo, Jong-Shenq [1 ]
Wu, Chin-Chin [2 ]
机构
[1] Tamkang Univ, Dept Math, 151 Yingzhuan Rd, New Taipei 25137, Taiwan
[2] Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, Taiwan
关键词
Dead-core; p-Laplace equation; strong absorption; self-similar solution; POROUS-MEDIUM EQUATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an initial boundary value problem for the p-Laplace equation with a strong absorption. We are concerned with the dead-core behavior of the solution. First, some criteria for developing dead-core are given. Also, the temporal dead-core rate for certain initial data is determined. Then we prove uniqueness theorem for the backward self-similar solutions.
引用
收藏
页码:541 / 551
页数:11
相关论文
共 50 条
  • [21] SINGULAR SOLUTIONS OF THE P-LAPLACE EQUATION
    KICHENASSAMY, S
    VERON, L
    MATHEMATISCHE ANNALEN, 1986, 275 (04) : 599 - 615
  • [22] Enclosure method for the p-Laplace equation
    Brander, Tommi
    Kar, Manas
    Salo, Mikko
    INVERSE PROBLEMS, 2015, 31 (04)
  • [23] A Meshless Solution to the p-Laplace Equation
    Bernal Martinez, Francisco Manuel
    Segura Kindelan, Manuel
    PROGRESS ON MESHLESS METHODS, 2009, 11 : 17 - 35
  • [24] The stochastic p-Laplace equation on Rd
    Schmitz, Kerstin
    Zimmermann, Aleksandra
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2023, 41 (05) : 892 - 917
  • [25] Regularity for a fractional p-Laplace equation
    Schikorra, Armin
    Shieh, Tien-Tsan
    Spector, Daniel E.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (01)
  • [26] On Higher Integrability of the Gradient of Solutions to the Zaremba Problem for p-Laplace Equation
    Alkhutov, Yu. A.
    D'Apice, C.
    Kisatov, M. A.
    Chechkina, A. G.
    DOKLADY MATHEMATICS, 2023, 108 (01) : 282 - 285
  • [27] Many-Dimensional Zaremba Problem for an Inhomogeneous p-Laplace Equation
    Yu. A. Alkhutov
    A. G. Chechkina
    Doklady Mathematics, 2022, 106 : 243 - 246
  • [28] Many-Dimensional Zaremba Problem for an Inhomogeneous p-Laplace Equation
    Alkhutov, Yu A.
    Chechkina, A. G.
    DOKLADY MATHEMATICS, 2022, 106 (01) : 243 - 246
  • [29] On Higher Integrability of the Gradient of Solutions to the Zaremba Problem for p-Laplace Equation
    Yu. A. Alkhutov
    C. D’Apice
    M. A. Kisatov
    A. G. Chechkina
    Doklady Mathematics, 2023, 108 : 282 - 285
  • [30] On existence and uniqueness classes for the Cauchy problem for the parabolic p-Laplace equation
    V. V. Zhikov
    M. D. Surnachev
    Doklady Mathematics, 2012, 86 : 492 - 496