Biaccessibility in quadratic Julia sets

被引:22
|
作者
Zakeri, S [1 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
D O I
10.1017/S0143385700001024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper consists of two nearly independent parts, both of which discuss the common theme of biaccessible points in the Julia set J of a quadratic polynomial f : z bar arrow pointing right z(2) + c. In Part I, we assume that J is locally-connected. We prove that the Brolin measure of the set of biaccessible points (through the basin of attraction of infinity) in J is zero except when f (z) = z(2) - 2 is the Chebyshev map for which the corresponding measure is one. As a corollary, we show that a locally-connected quadratic Julia set is not a countable union of embedded arcs unless it is a straight line or a Jordan curve. In Part II, we assume that f has an irrationally indifferent fixed point alpha. If z is a biaccessible point in J, we prove that the orbit of z eventually hits the critical point of f in the Siegel case, and the fixed point a, in the Cremer case. As a corollary, it follows that the set of biaccessible points in J has Brolin measure zero.
引用
收藏
页码:1859 / 1883
页数:25
相关论文
共 50 条
  • [21] Stability of Julia sets for a quadratic random dynamical system
    龚志民
    邱维元
    王键
    Science China Mathematics, 2002, (11) : 1381 - 1389
  • [22] Connectedness of Julia sets for a quadratic random dynamical system
    Gong, ZM
    Qiu, WY
    Li, Y
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 1807 - 1815
  • [23] Hausdorff dimension 2 for Julia sets of quadratic polynomials
    Stefan-M. Heinemann
    Bernd O. Stratmann
    Mathematische Zeitschrift, 2001, 237 : 571 - 583
  • [24] Stability of Julia sets for a quadratic random dynamical system
    Gong Zhimin
    Qiu Weiyuan
    Wang Jian
    Science in China Series A: Mathematics, 2002, 45 (11): : 1381 - 1389
  • [25] The solar Julia sets of basic quadratic Cremer polynomials
    Blokh, A.
    Buff, X.
    Cheritat, A.
    Oversteegen, L.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 : 51 - 65
  • [26] Quadratic Julia sets with positive Lebesgue measure.
    Buff, X
    Chéritat, A
    COMPTES RENDUS MATHEMATIQUE, 2005, 341 (11) : 669 - 674
  • [27] Hausdorff dimension 2 for Julia sets of quadratic polynomials
    Heinemann, SM
    Stratmann, BO
    MATHEMATISCHE ZEITSCHRIFT, 2001, 237 (03) : 571 - 583
  • [28] SIERPINSKI CURVE JULIA SETS FOR QUADRATIC RATIONAL MAPS
    Devaney, Robert L.
    Fagella, Nuria
    Garijo, Antonio
    Jarque, Xavier
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (01) : 3 - 22
  • [29] Stability of Julia sets for a quadratic random dynamical system
    Gong, ZM
    Qiu, WY
    Wang, JA
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (11): : 1381 - 1389
  • [30] Results for the Hausdorff dimension of Julia sets of quadratic polynomials
    Bodart, O
    Zinsmeister, M
    FUNDAMENTA MATHEMATICAE, 1996, 151 (02) : 121 - 137