Classification of Hand Motions in EEG Signals using Recurrent Neural Networks

被引:0
|
作者
Popov, E. [1 ]
Fomenkov, S. [1 ]
机构
[1] Volgograd State Tech Univ, CAD Dept, Volgograd, Russia
基金
俄罗斯基础研究基金会;
关键词
EEG; brain-computer interface; recurrent convolutional neural network; ADADELTA; reclified linear; softmax; cross-entropy;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper describes hand motion detection and the method for classification of 32-component EEG signals. This method is based on using recurrent convolution neural network as multi-class classifier. In this paper, we propose and empirically evaluate several architectures of recurrent convolutional neural network, and show advantages of using recurrent convolutional neural network for investigating problem. The results prove that this type of classifier can effectively distinguish characteristic features in the initial EEG signals and provide correct values of neural network outputs. Using recurrent convolution layer instead of the standard convolution layer can significantly improve the quality of classification. Adding recurrent connections for convolutional layer neurons increases the depth of the network, maintaining a constant number of parameters by weight sharing between layers.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Spiking Neural Networks applied to the classification of motor tasks in EEG signals
    Virgilio G, Carlos D.
    Sossa A, Juan H.
    Antelis, Javier M.
    Falcon, Luis E.
    NEURAL NETWORKS, 2020, 122 : 130 - 143
  • [32] Classification of image encoded SSVEP-based EEG signals using Convolutional Neural Networks
    de Paula, Patrick Oliveira
    da Silva Costa, Thiago Bulhoes
    de Faissol Attux, Romis Ribeiro
    Fantinato, Denis Gustavo
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 214
  • [33] Massively parallel classification of EEG signals using min-max modular neural networks
    Lu, BL
    Shin, J
    Ichikawa, M
    ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 601 - 608
  • [34] Cognitive State Classification Using Convolutional Neural Networks on Gamma-Band EEG Signals
    Avital, Nuphar
    Nahum, Elad
    Levi, Gal Carmel
    Malka, Dror
    Applied Sciences (Switzerland), 2024, 14 (18):
  • [35] Automatic Classification of Motor Impairment Neural Disorders from EEG Signals Using Deep Convolutional Neural Networks
    Vrbancic, Grega
    Podgorelec, Vili
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2018, 24 (04) : 1 - 7
  • [36] Classification of Hand Motions within EEG Signals for Non-Invasive BCI-based Robot Hand Control
    Cho, Jeong-Hyun
    Jeong, Ji-Hoon
    Shim, Kyung-Hwan
    Kim, Dong-Joo
    Lee, Seong-Whan
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 515 - 518
  • [37] EEG Visual and Non- Visual Learner Classification Using LSTM Recurrent Neural Networks
    Jawed, Soyiba
    Amin, Hafeez Ullah
    Malik, Aamir Saeed
    Faye, Ibrahima
    2018 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2018, : 467 - 471
  • [38] Classification of EEG signals using neural network and logistic regression
    Subasi, A
    Erçelebi, E
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2005, 78 (02) : 87 - 99
  • [39] Spatiotemporal dynamics in spiking recurrent neural networks using modified-full-FORCE on EEG signals
    Ioannides, Georgios
    Kourouklides, Ioannis
    Astolfi, Alessandro
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [40] Spatiotemporal dynamics in spiking recurrent neural networks using modified-full-FORCE on EEG signals
    Georgios Ioannides
    Ioannis Kourouklides
    Alessandro Astolfi
    Scientific Reports, 12