Cartan matrix for the finite symplectic group Sp(6,3)

被引:8
|
作者
Liu, AL [1 ]
Ye, JC [1 ]
机构
[1] Tongji Univ, Dept Appl Math, Shanghai 200092, Peoples R China
关键词
symplectic group; Cartan matrix;
D O I
10.1007/s100110300005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cartan matrix for the finite symplectic group Sp(6,3) over a field of three elements is computed in this paper by using a computer and the MATLAB software.
引用
收藏
页码:33 / 39
页数:7
相关论文
共 50 条
  • [21] Finite quotients of the pure symplectic braid group
    Magaard, K
    Strambach, K
    Volklein, H
    ISRAEL JOURNAL OF MATHEMATICS, 1998, 106 (1) : 13 - 28
  • [22] Finite order elements in the integral symplectic group
    Balasubramanian, Kumar
    Murty, M. Ram
    Shankhadhar, Karam Deo
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2018, 33 (04) : 427 - 433
  • [23] UNIT TRIANGULAR FACTORIZATION OF THE MATRIX SYMPLECTIC GROUP
    Jin, Pengzhan
    Tang, Yifa
    Zhu, Aiqing
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (04) : 1630 - 1650
  • [24] UNO'S INVARIANT CONJECTURE FOR THE FINITE SYMPLECTIC GROUP Sp4(q) IN THE DEFINING CHARACTERISTIC
    An, Jianbei
    Huang, Shih-Chang
    Yamada, Hiromichi
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) : 3868 - 3888
  • [25] Matrix elements for the symplectic sp(4) Lie algebra
    Bernardes, ED
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (35): : 6295 - 6307
  • [26] ON THE FIRST CARTAN INVARIANT OF THE GROUP Sp(4, p~n)
    叶家琛
    Science Bulletin, 1987, (17) : 1221 - 1221
  • [27] On the First Cartan Invariant of the Group Sp(4,p~n)
    叶家琛
    Acta Mathematica Sinica,English Series, 1988, (01) : 18 - 27
  • [28] On the First Cartan Invariant of the Group Sp(4,p~n)
    叶家琛
    ActaMathematicaSinica, 1988, (01) : 18 - 27
  • [29] On a maximal subgroup of the symplectic group Sp(8, 2)
    Faryad Ali
    Ayoub B. M. Basheer
    Afrika Matematika, 2021, 32 : 1531 - 1562
  • [30] SOME REMARKS ON EIGENVALUES OF THE CARTAN MATRIX IN FINITE-GROUPS
    KIYOTA, M
    WADA, T
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (11) : 3839 - 3860