A note on warped products

被引:2
|
作者
Melendez, Josue [1 ]
Hernandez, Mario [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09340, DF, Mexico
关键词
Warped product; Sectional curvature; Parabolicity; Sharp integral formula;
D O I
10.1016/j.jmaa.2021.125884
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we study the warping functions of some warped products. We give geometric conditions on warped products to obtain simple Riemannian products. For instance, we prove that if the sectional curvature of the warped product M xf N is nonnegative and the Riemannian manifold M is parabolic, then f is constant. We also obtain a sharp curvature integral for the warped product S1 xf N in terms of its Ricci curvature, which gives a characterization of the simple product S1 x N. (c) 2021 Elsevier Inc. All rights reserved.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [41] Curvature Estimates for Submanifolds in Warped Products
    Alias, L. J.
    Bessa, G. P.
    Montenegro, J. F.
    Piccione, P.
    RESULTS IN MATHEMATICS, 2011, 60 (1-4) : 265 - 286
  • [42] WARPED PRODUCTS WITH CRITICAL RIEMANNIAN METRIC
    KIM, BH
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1995, 71 (06) : 117 - 118
  • [43] ON QUASI-EINSTEIN WARPED PRODUCTS
    Dumitru, Dan
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 5 (02): : 85 - 95
  • [44] Warped products with special Riemannian curvature
    Marco Bertola
    Daniele Gouthier
    Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 2001, 32 : 45 - 62
  • [45] Warped products admitting a curvature bound
    Alexander, Stephanie B.
    Bishop, Richard L.
    ADVANCES IN MATHEMATICS, 2016, 303 : 88 - 122
  • [46] Uniqueness of entire graphs in warped products
    Alias, Luis J.
    Gervasio Colares, A.
    de Lima, Henrique F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 60 - 75
  • [47] PSEUDOCONVEXITY IN LORENTZIAN DOUBLY WARPED PRODUCTS
    ALLISON, D
    GEOMETRIAE DEDICATA, 1991, 39 (02) : 223 - 227
  • [48] Ricci curvature bounds for warped products
    Ketterer, Christian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (02) : 266 - 299
  • [49] Curvature Estimates for Submanifolds in Warped Products
    L. J. Alías
    G. P. Bessa
    J. F. Montenegro
    P. Piccione
    Results in Mathematics, 2011, 60 : 265 - 286
  • [50] Affine connections on singular warped products
    Wang, Yong
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (05)