Upper Bounds on the Number of Solutions of Binary Integer Programs

被引:0
|
作者
Jain, Siddhartha [1 ]
Kadioglu, Serdar [1 ]
Sellmann, Meinolf [1 ]
机构
[1] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
关键词
solution counting; CP-based Lagrangian relaxation; surrogate relaxation; dynamic programming; AUTOMATIC RECORDING PROBLEM; APPROXIMATED CONSISTENCY; LAGRANGIAN-RELAXATION; KNAPSACK CONSTRAINTS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new method to compute upper bounds of the number of solutions of binary integer programming (BIP) problems. Given a BIP, we create a dynamic programming (DP) table for a redundant knapsack constraint which is obtained by surrogate relaxation. We then consider a Lagrangian relaxation of the original problem to obtain an initial weight bound on the knapsack. This bound is then refined through subgradient optimization. The latter provides a variety of Lagrange multipliers which allow us to filter infeasible edges in the DP table. The number of paths in the final table then provides an upper bound on the number of solutions. Numerical results show the effectiveness of our counting framework on automatic recording and market split problems.
引用
收藏
页码:203 / 218
页数:16
相关论文
共 50 条
  • [21] Upper bounds on the coalition number
    Haynes, Teresa W.
    Hedetniemi, Jason T.
    Hedetniemi, Stephen T.
    Mcrae, Alice A.
    Mohan, Raghuveer
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 80 : 442 - 453
  • [22] A polyhedral study of integer variable upper bounds
    Klabjan, D
    Nemhauser, GL
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2002, 27 (04) : 711 - 739
  • [23] Condition number bounds for problems with integer coefficients
    Malajovich, G
    [J]. JOURNAL OF COMPLEXITY, 2000, 16 (03) : 529 - 551
  • [24] BOUNDS FOR RANDOM BINARY QUADRATIC PROGRAMS
    Natarajan, Karthik
    Shi, Dongjian
    Toh, Kim-Chuan
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (01) : 671 - 692
  • [25] LOWER AND UPPER-BOUNDS FOR THE NUMBER OF SOLUTIONS OF P+H=PR
    KAN, JH
    [J]. ACTA ARITHMETICA, 1990, 56 (03) : 237 - 248
  • [26] Sparsity and Integrality Gap Transference Bounds for Integer Programs
    Aliev, Iskander
    Celaya, Marcel
    Henk, Martin
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2024, 2024, 14679 : 1 - 13
  • [27] Upper bounds for Gaussian stochastic programs
    Geoffrey Pritchard
    Golbon Zakeri
    [J]. Mathematical Programming, 1999, 86 : 51 - 63
  • [28] Upper bounds for Gaussian stochastic programs
    Pritchard, G
    Zakeri, G
    [J]. MATHEMATICAL PROGRAMMING, 1999, 86 (01) : 51 - 63
  • [29] Tightness of Sensitivity and Proximity Bounds for Integer Linear Programs
    Berndt, Sebastian
    Jansen, Klaus
    Lassota, Alexandra
    [J]. SOFSEM 2021: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2021, 12607 : 349 - 360
  • [30] A hierarchy of bounds for stochastic mixed-integer programs
    Burhaneddin Sandıkçı
    Nan Kong
    Andrew J. Schaefer
    [J]. Mathematical Programming, 2013, 138 : 253 - 272