Lightweight Modules for Efficient Deep Learning Based Image Restoration

被引:38
|
作者
Lahiri, Avisek [1 ]
Bairagya, Sourav [2 ]
Bera, Sutanu [1 ]
Haldar, Siddhant [1 ]
Biswas, Prabir Kumar [1 ]
机构
[1] Indian Inst Technol Kharagpur, Kharagpur 721302, W Bengal, India
[2] Mathworks, New Delhi 110001, India
关键词
Convolution; Image restoration; Task analysis; Neural networks; Kernel; Computational modeling; Image denoising; image inpainting; image super-resolution; CNN; generative adversarial network (GAN); adversarial learning; efficient neural networks;
D O I
10.1109/TCSVT.2020.3007723
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low level image restoration is an integral component of modern artificial intelligence (AI) driven camera pipelines. Most of these frameworks are based on deep neural networks which present a massive computational overhead on resource constrained platform like a mobile phone. In this paper, we propose several lightweight low-level modules which can be used to create a computationally low cost variant of a given baseline model. Recent works for efficient neural networks design have mainly focused on classification. However, low-level image processing falls under the 'image-to-image' translation genre which requires some additional computational modules not present in classification. This paper seeks to bridge this gap by designing generic efficient modules which can replace essential components used in contemporary deep learning based image restoration networks. We also present and analyse our results highlighting the drawbacks of applying depthwise separable convolutional kernel (a popular method for efficient classification network) for sub-pixel convolution based upsampling (a popular upsampling strategy for low-level vision applications). This shows that concepts from domain of classification cannot always be seamlessly integrated into 'image-to-image' translation tasks. We extensively validate our findings on three popular tasks of image inpainting, denoising and super-resolution. Our results show that proposed networks consistently output visually similar reconstructions compared to full capacity baselines with significant reduction of parameters, memory footprint and execution speeds on contemporary mobile devices.
引用
收藏
页码:1395 / 1410
页数:16
相关论文
共 50 条
  • [11] Image forgery detection based on fusion of lightweight deep learning models
    Doegar, Amit
    Hiriyannaiah, Srinidhi
    Matt, Siddesh Gaddadevara
    Gopaliyengar, Srinivasa Krishnarajanagar
    Dutta, Maitreyee
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 (04) : 1978 - 1993
  • [12] Efficient image segmentation based on deep learning for mineral image classification
    Liu, Yang
    Zhang, Zelin
    Liu, Xiang
    Wang, Lei
    Xia, Xuhui
    ADVANCED POWDER TECHNOLOGY, 2021, 32 (10) : 3885 - 3903
  • [13] Deep learning–based image restoration algorithm for coronary CT angiography
    Fuminari Tatsugami
    Toru Higaki
    Yuko Nakamura
    Zhou Yu
    Jian Zhou
    Yujie Lu
    Chikako Fujioka
    Toshiro Kitagawa
    Yasuki Kihara
    Makoto Iida
    Kazuo Awai
    European Radiology, 2019, 29 : 5322 - 5329
  • [14] Wavefront Restoration Method Based on Light Intensity Image Deep Learning
    Ma Huimin
    Jiao Jun
    Qiao Yan
    Liu Haiqiu
    Gao Yanwei
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (08)
  • [15] Restoration of Laser Interference Image Based on Large Scale Deep Learning
    Zhou, Xiangyu
    Xu, Zhongjie
    Cheng, Xiangai
    Xing, Zhongyang
    IEEE ACCESS, 2022, 10 : 123057 - 123067
  • [16] Degraded image restoration of vortex beam array based on deep learning
    Zhao, Jiasheng
    Wei, Hongyan
    Du, Qianqian
    Fu, Yuejiao
    Zhou, Han
    PHYSICA SCRIPTA, 2024, 99 (06)
  • [17] Effects of Patient Size on Image Quality in PET Deep Learning Based Image Restoration
    Bai, Bing
    Chan, Chung
    Iatrou, Maria
    Asma, Evren
    Kolthammer, Jeff
    JOURNAL OF NUCLEAR MEDICINE, 2021, 62
  • [18] On-Demand Learning for Deep Image Restoration
    Gao, Ruohan
    Grauman, Kristen
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 1095 - 1104
  • [19] A survey of deep learning approaches to image restoration
    Su, Jingwen
    Xu, Boyan
    Yin, Hujun
    NEUROCOMPUTING, 2022, 487 : 46 - 65
  • [20] Deep learning methods for neutron image restoration
    Yang, Jiarui
    Zhao, Chenyi
    Qiao, Shuang
    Zhang, Tian
    Yao, Xiangyu
    ANNALS OF NUCLEAR ENERGY, 2023, 188