Linear impulsive dynamic systems on time scales

被引:0
|
作者
Lupulescu, Vasile [1 ]
Zada, Akbar [2 ]
机构
[1] Constantin Brancusi Univ, Targu Jiu 210152, Romania
[2] Govt Coll Univ, ASSMS, Lahore, Pakistan
关键词
EXPONENTIAL STABILITY; EQUATIONS; 1ST-ORDER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to present the fundamental concepts of the basic theory for linear impulsive systems on time scales. First, we introduce the transition matrix for linear impulsive dynamic systems on time scales and we establish some properties of them. Second, we prove the existence and uniqueness of solutions for linear impulsive dynamic systems on time scales. Also we give some sufficient conditions for the stability of linear impulsive dynamic systems on time scales.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 50 条
  • [21] Positive Solutions of Impulsive Dynamic System on Time Scales
    Wang, Da-Bin
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (01): : 214 - 224
  • [22] OSCILLATION CRITERIA FOR IMPULSIVE DYNAMIC EQUATIONS ON TIME SCALES
    Huang, Mugen
    Feng, Weizhen
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [23] Asymptotic equivalence of impulsive dynamic equations on time scales
    Akgol, Sibel Dogru
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (02): : 277 - 291
  • [24] On first order impulsive dynamic equations on time scales
    Benchohra, M
    Henderson, J
    Ntouyas, SK
    Ouahab, A
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (06) : 541 - 548
  • [25] OSCILLATION OF SOLUTIONS TO IMPULSIVE DYNAMIC EQUATIONS ON TIME SCALES
    Li, Qiaoluan
    Guo, Fang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [26] ASYMPTOTIC EQUIVALENCE BETWEEN TWO LINEAR DYNAMIC SYSTEMS ON TIME SCALES
    Choi, Sung Kyu
    Koo, Namjip
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) : 1075 - 1085
  • [27] Stability criteria of delay impulsive systems on time scales
    Ma, Yajun
    Sun, Jitao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (04) : 1181 - 1189
  • [28] On the Bielecki–Ulam’s Type Stability Results of First Order Non-linear Impulsive Delay Dynamic Systems on Time Scales
    Syed Omar Shah
    Akbar Zada
    Muzamil Muzamil
    Muhammad Tayyab
    Rizwan Rizwan
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [29] Stability Analysis of the First Order Non-linear Impulsive Time Varying Delay Dynamic System on Time Scales
    Shah, Syed Omar
    Zada, Akbar
    Hamza, Alaa E.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (03) : 825 - 840
  • [30] Stability Analysis of the First Order Non-linear Impulsive Time Varying Delay Dynamic System on Time Scales
    Syed Omar Shah
    Akbar Zada
    Alaa E. Hamza
    Qualitative Theory of Dynamical Systems, 2019, 18 : 825 - 840