Quantum engineering of atomic phase shifts in optical clocks

被引:16
|
作者
Zanon-Willette, T. [1 ,2 ]
Almonacil, S. [3 ]
de Clercq, E. [4 ]
Ludlow, A. D. [5 ]
Arimondo, E. [6 ]
机构
[1] Univ Paris 06, Sorbonne Univ, LERMA, UMR 8112, F-75005 Paris, France
[2] PSL Res Univ, CNRS, Observ Paris, LERMA,UMR 8112, F-75014 Paris, France
[3] Grad Sch, Inst Opt, F-91127 Palaiseau, France
[4] UPMC, CNRS, Observ Paris, LNE SYRTE, F-75014 Paris, France
[5] NIST, Boulder, CO 80305 USA
[6] Univ Pisa, Dipartimento Fis E Fermi, I-56122 Pisa, Italy
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 05期
关键词
LATTICE CLOCK; SPECTROSCOPY; ACCURACY;
D O I
10.1103/PhysRevA.90.053427
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum engineering of time-separated Raman laser pulses in three-level systems is presented to produce an ultranarrow optical transition in bosonic alkali-earth clocks free from light shifts and with a significantly reduced sensitivity to laser parameter fluctuations. Based on a quantum artificial complex wave-function analytical model and supported by a full density-matrix simulation including a possible residual effect of spontaneous emission from the intermediate state, atomic phase shifts associated with Ramsey and hyper-Ramsey two-photon spectroscopy in optical clocks are derived. Various common-mode Raman frequency detunings are found in which the frequency shifts from off-resonant states are canceled, while their uncertainties at the 10(-18) level of accuracy are strongly reduced.
引用
收藏
页数:8
相关论文
共 50 条
  • [22] GaN laser diodes for quantum sensing, optical atomic clocks and precision metrology
    Najda, S. P.
    Perlin, P.
    Suski, T.
    Stanczyk, S.
    Leszczynski, M.
    Schiavon, D.
    Slight, T.
    Gwyn, S.
    Watson, S.
    Kelly, A. E.
    Knapp, M.
    Haji, M.
    QUANTUM SENSING AND NANO ELECTRONICS AND PHOTONICS XVIII, 2022, 12009
  • [23] Modeling light shifts in optical lattice clocks
    Nemitz, Nils
    Jorgensen, Asbjorn Arvad
    Yanagimoto, Ryotatsu
    Bregolin, Filippo
    Katori, Hidetoshi
    PHYSICAL REVIEW A, 2019, 99 (03)
  • [24] Optical atomic clocks: A revolution in performance
    Hollberg, L
    2005 CONFERENCE ON LASERS & ELECTRO-OPTICS (CLEO), VOLS 1-3, 2005, : 1243 - 1245
  • [25] Optical Atomic Clocks in Ion Traps
    Margolis, Helen S.
    PHYSICS WITH TRAPPED CHARGED PARTICLES: LECTURES FROM THE LES HOUCHES WINTER SCHOOL, 2014, : 261 - 274
  • [26] All-optical atomic clocks
    Drullinger, RE
    Udem, T
    Diddams, SA
    Vogel, KR
    Oates, CW
    Curtis, EA
    Lee, WD
    Iiano, WM
    Hollberg, L
    Bergquist, C
    PROCEEDINGS OF THE 2001 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM & PDA EXHIBITION, 2001, : 69 - 75
  • [27] Progress of Optical Lattice Atomic Clocks
    Lu Xiaotong
    Chang Hong
    ACTA OPTICA SINICA, 2022, 42 (03)
  • [28] GaN laser diodes for cold-atom quantum sensors and optical atomic clocks
    Najda, S. P.
    Perlin, P.
    Suski, T.
    Stanczyk, S.
    Leszczynski, M.
    Schiavon, D.
    Slight, T.
    Gwyn, S.
    Watson, S.
    Kelly, A. E.
    Knapp, M.
    Haji, M.
    EMERGING IMAGING AND SENSING TECHNOLOGIES FOR SECURITY AND DEFENCE VI, 2021, 11868
  • [29] The quantum beat - The physical principles of atomic clocks
    Ekstrom, CR
    SCIENCE, 1999, 286 (5438) : 248 - 248
  • [30] QUANTUM COMPUTING Atomic clocks in the solid state
    Rogge, Sven
    Sellars, Matthew J.
    NATURE NANOTECHNOLOGY, 2013, 8 (08) : 544 - 545