Schrodinger operators on regular metric trees with long range potentials: Weak coupling behavior

被引:1
|
作者
Ekholm, Tomas [2 ]
Enblom, Andreas [1 ]
Kovarik, Hynek [3 ]
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
[2] Lund Univ, Dept Math, S-22100 Lund, Sweden
[3] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
Schrodinger operators; Metric trees; Fourier-Bessel transformation; Weak coupling; BOUND-STATES; LAPLACIAN; SPECTRUM; GRAPHS;
D O I
10.1016/j.jde.2009.11.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a regular d-dimensional metric tree Gamma with root o. Define the Schrodinger operator -Delta -V, where V is a non-negative, symmetric potential, on Gamma. with Neumann boundary conditions at o. Provided that V decays like |x|(-gamma) at infinity, where 1 <= gamma <= d <= 2, gamma not equal 2, we will determine the weak coupling behavior of the bottom of the spectrum of -Delta -V. In other words. we will describe the asymptotic behavior of inf sigma(-Delta - alpha V) as alpha -> 0+. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:850 / 865
页数:16
相关论文
共 50 条