Weakly coupled Schrodinger operators on regular metric trees

被引:6
|
作者
Kovarik, Hynek [1 ]
机构
[1] Univ Stuttgart, Inst Anal Dynam & Modeling, D-70569 Stuttgart, Germany
关键词
Schrodinger operator; Sturm-Liouville problems; metric trees;
D O I
10.1137/070682733
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spectral properties of the Schrodinger operator A(lambda) = -Delta + lambda V on regular metric trees are studied. It is shown that as lambda goes to zero the asymptotical behavior of the negative eigenvalues of A(lambda) depends on the global structure of the tree.
引用
收藏
页码:1135 / 1149
页数:15
相关论文
共 50 条
  • [1] Laplace and Schrodinger operators on regular metric trees: The discrete spectrum case
    Solomyak, M
    [J]. FUNCTION SPACES, DIFFERENTIAL OPERATORS AND NONLINEAR ANALYSIS: THE HANS TRIEBEL ANNIVERSARY VOLUME, 2003, : 161 - 181
  • [2] The discrete spectrum of Schrodinger operators with δ-type conditions on regular metric trees
    Zhao, Jia
    Shi, Guoliang
    Yan, Jun
    [J]. JOURNAL OF SPECTRAL THEORY, 2018, 8 (02) : 459 - 491
  • [3] Dispersion for Schrodinger operators on regular trees
    Ammari, Kais
    Sabri, Mostafa
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (02)
  • [4] Schrodinger operators on regular metric trees with long range potentials: Weak coupling behavior
    Ekholm, Tomas
    Enblom, Andreas
    Kovarik, Hynek
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) : 850 - 865
  • [5] Eigenvalue estimates for Schrodinger operators on metric trees
    Ekholm, Tomas
    Frank, Rupert L.
    Kovarik, Hynek
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (06) : 5165 - 5197
  • [6] Schrodinger operators on homogeneous metric trees: Spectrum in gaps
    Sobolev, AV
    Solomyak, M
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (05) : 421 - 467
  • [7] Discreteness of spectrum for Schrodinger operators with δ′-type conditions on infinite regular trees
    Zhao, Jia
    Shi, Guoliang
    Yan, Jun
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (05) : 1091 - 1117
  • [8] REMARK ABOUT WEAKLY COUPLED ONE-DIMENSIONAL SCHRODINGER OPERATORS
    KLAUS, M
    [J]. HELVETICA PHYSICA ACTA, 1979, 52 (02): : 223 - 229
  • [9] BOUND-STATE OF WEAKLY COUPLED SCHRODINGER OPERATORS IN ONE AND 2 DIMENSIONS
    SIMON, B
    [J]. ANNALS OF PHYSICS, 1976, 97 (02) : 279 - 288
  • [10] Trace Operators on Regular Trees
    Koskela, Pekka
    Khanh Ngoc Nguyen
    Wang, Zhuang
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2020, 8 (01): : 396 - 409