The partition function modulo 3 in arithmetic progressions

被引:0
|
作者
Smith, Geoffrey D. [1 ]
Ye, Lynnelle [2 ]
机构
[1] Yale Univ, Dept Math, 10 Hillhouse Ave, New Haven, CT 06511 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
来源
RAMANUJAN JOURNAL | 2016年 / 39卷 / 03期
关键词
Partitions; Congruences; Modular forms; PARITY;
D O I
10.1007/s11139-015-9680-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be the partition function. Ahlgren and Ono conjectured that every arithmetic progression contains infinitely many integers for which is not congruent to . Radu proved this conjecture in 2010 using the work of Deligne and Rapoport. In this note, we give a simpler proof of Ahlgren and Ono's conjecture in the special case where the modulus of the arithmetic progression is a power of by applying a method of Boylan and Ono and using the work of Bella < che and Khare generalizing Nicolas and Serre's results on the local nilpotency of the Hecke algebra.
引用
收藏
页码:603 / 608
页数:6
相关论文
共 50 条
  • [31] THE DIVISOR FUNCTION OVER ARITHMETIC PROGRESSIONS
    FOUVRY, E
    IWANIEC, H
    ACTA ARITHMETICA, 1992, 61 (03) : 271 - 287
  • [32] Arithmetic of the partition function
    Ono, K
    SPECIAL FUNCTIONS 2000: CURRENT PERSPECTIVE AND FUTURE DIRECTIONS, 2001, 30 : 243 - 253
  • [33] Shifted Distinct-part Partition Identities in Arithmetic Progressions
    Ethan Alwaise
    Robert Dicks
    Jason Friedman
    Lianyan Gu
    Zach Harner
    Hannah Larson
    Madeline Locus
    Ian Wagner
    Josh Weinstock
    Annals of Combinatorics, 2017, 21 : 479 - 494
  • [34] Shifted Distinct-part Partition Identities in Arithmetic Progressions
    Alwaise, Ethan
    Dicks, Robert
    Friedman, Jason
    Gu, Lianyan
    Harner, Zach
    Larson, Hannah
    Locus, Madeline
    Wagner, Ian
    Weinstock, Josh
    ANNALS OF COMBINATORICS, 2017, 21 (04) : 479 - 494
  • [35] Arithmetic of the 7-regular bipartition function modulo 3
    Lin, Bernard L. S.
    RAMANUJAN JOURNAL, 2015, 37 (03): : 469 - 478
  • [36] Arithmetic of the 7-regular bipartition function modulo 3
    Bernard L. S. Lin
    The Ramanujan Journal, 2015, 37 : 469 - 478
  • [37] THE PARTITION FUNCTION MODULO PRIME POWERS
    Boylan, Matthew
    Webb, John J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (04) : 2169 - 2206
  • [38] Sums of Multiplicative Function in Special Arithmetic Progressions
    Bin Feng
    Czechoslovak Mathematical Journal, 2019, 69 : 1 - 10
  • [39] Arithmetic progressions of zeros of the Riemann zeta function
    van Frankenhuijsen, M
    JOURNAL OF NUMBER THEORY, 2005, 115 (02) : 360 - 370
  • [40] The Divisor Function in Arithmetic Progressions to Smooth Moduli
    Irving, Alastair James
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (15) : 6675 - 6698