The partition function modulo 3 in arithmetic progressions

被引:0
|
作者
Smith, Geoffrey D. [1 ]
Ye, Lynnelle [2 ]
机构
[1] Yale Univ, Dept Math, 10 Hillhouse Ave, New Haven, CT 06511 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
来源
RAMANUJAN JOURNAL | 2016年 / 39卷 / 03期
关键词
Partitions; Congruences; Modular forms; PARITY;
D O I
10.1007/s11139-015-9680-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be the partition function. Ahlgren and Ono conjectured that every arithmetic progression contains infinitely many integers for which is not congruent to . Radu proved this conjecture in 2010 using the work of Deligne and Rapoport. In this note, we give a simpler proof of Ahlgren and Ono's conjecture in the special case where the modulus of the arithmetic progression is a power of by applying a method of Boylan and Ono and using the work of Bella < che and Khare generalizing Nicolas and Serre's results on the local nilpotency of the Hecke algebra.
引用
收藏
页码:603 / 608
页数:6
相关论文
共 50 条