Facile synthesis and electrochemical properties of carbon-coated ZnO nanotubes for high-rate lithium storage

被引:16
|
作者
Kim, Han-Seul [1 ]
Seo, Hyungeun [1 ]
Kim, Kyungbae [1 ]
Lee, Jaegab [1 ]
Kim, Jae-Hun [1 ]
机构
[1] Kookmin Univ, Sch Mat Sci & Engn, Seoul 02707, South Korea
基金
新加坡国家研究基金会;
关键词
Zinc oxide; Nanotube; Carbon coating; Anode; Lithium-ion battery; ZINC-OXIDE NANOPARTICLES; ION BATTERIES; NANOROD ARRAYS; FABRICATION; GROWTH; ANODE; NANOSTRUCTURES; PERFORMANCE; ROUTE;
D O I
10.1016/j.ceramint.2018.07.031
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
ZnO is an important functional material, and a nanotube structure is beneficial for various applications. Here, we report the facile synthesis and electrochemical properties of carbon-coated ZnO nanotube materials as Li rechargeable battery anodes. ZnO nanorod was first synthesized via a simple hydrothermal method. Subsequently, the material was annealed with a carbon precursor, forming free-standing, carbon-coated ZnO nanotubes. The carbon-coated nanotube structure is beneficial to alleviate volume changes of the ZnO active material during Li insertion and extraction processes as well as to improve the electrochemical reaction kinetics. Electrochemical test results demonstrate that the carbon-coated ZnO nanotube electrodes deliver improved the cycling performance compared with ZnO nanorod electrodes. Better rate performance than carbon-coated ZnO nanoparticle electrodes was also achieved.
引用
收藏
页码:18222 / 18226
页数:5
相关论文
共 50 条
  • [41] Carbon-coated LiMn0.8Fe0.2PO4 cathodes for high-rate lithium-ion batteries
    Xi Yao
    Dan Li
    Li Guo
    Mohamed Kallel
    Saeed D. Alahmari
    Juanna Ren
    Ilwoo Seok
    Gourisankar Roymahapatra
    Chao Wang
    [J]. Advanced Composites and Hybrid Materials, 2024, 7
  • [42] Solvothermal synthesis of carbon-coated tin nanorods for superior reversible lithium ion storage
    Wu, Ping
    Du, Ning
    Liu, Jie
    Zhang, Hui
    Yu, Jingxue
    Yang, Deren
    [J]. MATERIALS RESEARCH BULLETIN, 2011, 46 (12) : 2278 - 2282
  • [43] Carbon-coated LiMn0.8Fe0.2PO4 cathodes for high-rate lithium-ion batteries
    Yao, Xi
    Li, Dan
    Guo, Li
    Kallel, Mohamed
    Alahmari, Saeed D.
    Ren, Juanna
    Seok, Ilwoo
    Roymahapatra, Gourisankar
    Wang, Chao
    [J]. ADVANCED COMPOSITES AND HYBRID MATERIALS, 2024, 7 (02)
  • [44] Facile Carbon Fluoride/Sulfur Hybrid Cathode for High-Rate Lithium Batteries
    Peng, Sikan
    Wang, Chen
    Yan, Shaojiu
    Wang, Nan
    Wang, Jixian
    Dai, Shenglong
    [J]. CHEMELECTROCHEM, 2019, 6 (13): : 3291 - 3297
  • [45] Facile fabrication of high-performance S, N-co-doped carbon-coated pyrrhotite for lithium and sodium storage
    Jiang, Feng
    He, Shuai
    Zhang, Qiancheng
    Sun, Wei
    Zhang, Limin
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002
  • [46] Electrochemical storage of lithium multiwalled carbon nanotubes
    Frackowiak, E
    Gautier, S
    Gaucher, H
    Bonnamy, S
    Beguin, F
    [J]. CARBON, 1999, 37 (01) : 61 - 69
  • [47] Characteristics of electrochemical storage lithium of carbon nanotubes
    Zhang, AL
    Zhai, XJ
    Fu, Y
    Zhai, YC
    Wang, YX
    [J]. JOURNAL OF INORGANIC MATERIALS, 2004, 19 (01) : 244 - 248
  • [48] Facile Synthesis of Carbon-Coated Silicon/Graphite Spherical Composites for High-Performance Lithium-Ion Batteries
    Kim, So Yeun
    Lee, Jaewoo
    Kim, Bo-Hye
    Kim, Young-Jun
    Yang, Kap Seung
    Park, Min-Sik
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (19) : 12109 - 12117
  • [49] Hydrothermal synthesis of carbon-coated lithium vanadium phosphate
    Chang, Caixian
    Xiang, Jiangfeng
    Shi, Xixi
    Han, Xiaoyan
    Yuan, Liangjie
    Sun, Jutang
    [J]. ELECTROCHIMICA ACTA, 2008, 54 (02) : 623 - 627
  • [50] Synthesis of monodiperse carbon-coated lithium iron phosphate
    Ye, Qing
    Hao, Junjie
    Guo, Zhimeng
    [J]. APPLICATIONS OF ENGINEERING MATERIALS, PTS 1-4, 2011, 287-290 : 1379 - 1382