Impact of System and Diagnostic Errors on Medical Litigation Outcomes: Machine Learning-Based Prediction Models

被引:3
|
作者
Yamamoto, Norio [1 ,2 ,3 ]
Sukegawa, Shintaro [4 ]
Watari, Takashi [5 ,6 ,7 ]
机构
[1] Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Epidemiol, Okayama 7008558, Japan
[2] Miyamoto Orthoped Hosp, Dept Orthoped Surg, Okayama 7738236, Japan
[3] Systemat Review Workshop Peer Support Grp SRWS PS, Osaka 5410043, Japan
[4] Kagawa Prefectural Cent Hosp, Dept Oral & Maxillofacial Surg, Takamatsu, Kagawa 7608557, Japan
[5] Shimane Univ Hosp, Gen Med Ctr, Izumo, Shimane 6938501, Japan
[6] Univ Michigan Hlth Syst, Div Hosp Med, Ann Arbor, MI 48105 USA
[7] VA Ann Arbor Healthcare Syst, Med Serv, Ann Arbor, MI 48105 USA
关键词
medical malpractice claims; litigation; diagnostic error; medical error; system error; machine learning; prediction model; MALPRACTICE CLAIMS;
D O I
10.3390/healthcare10050892
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
No prediction models using use conventional logistic models and machine learning exist for medical litigation outcomes involving medical doctors. Using a logistic model and three machine learning models, such as decision tree, random forest, and light-gradient boosting machine (LightGBM), we evaluated the prediction ability for litigation outcomes among medical litigation in Japan. The prediction model with LightGBM had a good predictive ability, with an area under the curve of 0.894 (95% CI; 0.893-0.895) in all patients' data. When evaluating the feature importance using the SHApley Additive exPlanation (SHAP) value, the system error was the most significant predictive factor in all clinical settings for medical doctors' loss in lawsuits. The other predictive factors were diagnostic error in outpatient settings, facility size in inpatients, and procedures or surgery settings. Our prediction model is useful for estimating medical litigation outcomes.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Pre-existing and machine learning-based models for cardiovascular risk prediction
    Sang-Yeong Cho
    Sun-Hwa Kim
    Si-Hyuck Kang
    Kyong Joon Lee
    Dongjun Choi
    Seungjin Kang
    Sang Jun Park
    Tackeun Kim
    Chang-Hwan Yoon
    Tae-Jin Youn
    In-Ho Chae
    Scientific Reports, 11
  • [42] Pre-existing and machine learning-based models for cardiovascular risk prediction
    Cho, Sang-Yeong
    Kim, Sun-Hwa
    Kang, Si-Hyuck
    Lee, Kyong Joon
    Choi, Dongjun
    Kang, Seungjin
    Park, Sang Jun
    Kim, Tackeun
    Yoon, Chang-Hwan
    Youn, Tae-Jin
    Chae, In-Ho
    SCIENTIFIC REPORTS, 2021, 11 (01) : 8886
  • [43] Machine learning-based models for prediction of erectile dysfunction in localized prostate cancer
    Hasannejadasl, H.
    Roumen, C.
    van der Poel, H.
    Vanneste, B.
    van Roermund, J.
    Aben, K.
    Kalendralis, P.
    Osong, B.
    Kiemeney, L.
    van Oort, I.
    Verwey, R.
    Hochstenbach, L.
    Bloemen-van Gurp, E. J.
    Dekker, A.
    Fijten, R.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S683 - S684
  • [44] Machine Learning-Based Prediction Models for Clostridioides difficile Infection: A Systematic Review
    Tariq, Raseen
    Malik, Sheza
    Redij, Renisha
    Arunachalam, Shivaram
    Faubion, Jr William A.
    Khanna, Sahil
    CLINICAL AND TRANSLATIONAL GASTROENTEROLOGY, 2024, 15 (06)
  • [45] MACHINE LEARNING-BASED PREDICTION MODELS FOR C DIFFICILE INFECTION: A SYSTEMATIC REVIEW
    Tariq, Raseen
    Redij, Renisha
    Arunachalam, Shivaram Poigai
    Faubion, William
    Khanna, Sahil
    GASTROENTEROLOGY, 2023, 164 (06) : S1176 - S1176
  • [46] Performance tuning for machine learning-based software development effort prediction models
    Ertugrul, Egemen
    Baytar, Zakir
    Catal, Cagatay
    Muratli, Can
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2019, 27 (02) : 1308 - 1324
  • [47] Machine Learning-based BGP Traffic Prediction
    Farasat, Talaya
    Rathore, Muhammad Ahmad
    Khan, Akmal
    Kim, JongWon
    Posegga, Joachim
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 1925 - 1934
  • [48] Machine Learning-based Water Potability Prediction
    Alnaqeb, Reem
    Alrashdi, Fatema
    Alketbi, Khuloud
    Ismail, Heba
    2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [49] Machine Learning-based Prediction of Test Power
    Dhotre, Harshad
    Eggersgluess, Stephan
    Chakrabarty, Krishnendu
    Drechsler, Rolf
    2019 IEEE EUROPEAN TEST SYMPOSIUM (ETS), 2019,
  • [50] A MACHINE LEARNING-BASED TOURIST PATH PREDICTION
    Zheng, Siwen
    Liu, Yu
    Ouyang, Zhenchao
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 38 - 42