Robust Generalized Low Rank Approximation of Matrices for Image Recognition

被引:0
|
作者
Nakouri, Haifa [1 ]
Limam, Mohamed [2 ]
机构
[1] Univ Jendouba, Fac Sci Jurid Econ & Gest Jendouba, Jendouba, Tunisia
[2] Dhofar Univ, Salalah, Oman
关键词
L1-NORM;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
For a set of 2D objects such as image representations, a 2DPCA approach that computes principal components of row-row and column-column covariance matrices would be more appropriate. The Generalized Low Rank Approximation of Matrices (GLRAM) approach has proved its efficiency on computation time and compression ratio over 1 D principal components analysis approaches. However, GLRAM fails to efficiently account noise and outliers. To address this problem, a robust version of GLRAM, called RGLRAM is proposed. To weaken the noise effect, we propose a non-greedy iterative approach for GLRAM that maximizes data covariance in the projection subspace and minimizes the construction error. The proposed method is applied to face image recognition and shows its efficiency in handling noisy data more than GLRAM does. Experiments are performed on three benchmark face databases and results reveal that the proposed method achieves substantial results in terms of recognition accuracy, numerical stability, convergence and speed.
引用
收藏
页码:203 / 207
页数:5
相关论文
共 50 条
  • [21] Adaptive Low-Rank Approximation of Collocation Matrices
    M. Bebendorf
    S. Rjasanow
    Computing, 2003, 70 : 1 - 24
  • [22] On best uniform approximation by low-rank matrices
    Georgieva, I.
    Hofreither, C.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 518 : 159 - 176
  • [23] ON A PROBLEM OF WEIGHTED LOW-RANK APPROXIMATION OF MATRICES
    Dutta, Aritra
    Li, Xin
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2017, 38 (02) : 530 - 553
  • [24] Adaptive low-rank approximation of collocation matrices
    Bebendorf, M
    Rjasanow, S
    COMPUTING, 2003, 70 (01) : 1 - 24
  • [25] Nonnegative low rank matrix approximation for nonnegative matrices
    Song, Guang-Jing
    Ng, Michael K.
    APPLIED MATHEMATICS LETTERS, 2020, 105
  • [26] Structured low-rank approximation for nonlinear matrices
    Antonio Fazzi
    Numerical Algorithms, 2023, 93 : 1561 - 1580
  • [27] Structured low-rank approximation for nonlinear matrices
    Fazzi, Antonio
    NUMERICAL ALGORITHMS, 2023, 93 (04) : 1561 - 1580
  • [28] Multi-Low-Rank Approximation For Traffic Matrices
    Verma, Saurabh
    Narayanan, Arvind
    Zhang, Zhi-Li
    2017 PROCEEDINGS OF THE 29TH INTERNATIONAL TELETRAFFIC CONGRESS (ITC 29), VOL 1, 2017, : 72 - 80
  • [29] The inertia of the symmetric approximation for low-rank matrices
    Casanellas, Marta
    Fernandez-Sanchez, Jesus
    Garrote-Lopez, Marina
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (11): : 2349 - 2353
  • [30] Randomized algorithms for the low-rank approximation of matrices
    Liberty, Edo
    Woolfe, Franco
    Martinsson, Per-Gunnar
    Rolchlin, Vladimir
    Tyger, Mark
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (51) : 20167 - 20172