Synergy of TiO2/Na0.23TiO2 Heterojunction for Enhanced Photocatalysis

被引:8
|
作者
Wang, Jing-Zhou [1 ,2 ]
Zhou, Jian-Ping [1 ]
Guo, Ze-Qing [1 ]
Lei, Yu-Xi [1 ]
Ul Hassan, Qadeer [1 ]
机构
[1] Shaanxi Normal Univ, Sch Phys & Informat Technol, Xian 710119, Shaanxi, Peoples R China
[2] Ordos Inst Technol, Ordos 017000, Peoples R China
基金
中国国家自然科学基金;
关键词
band gap; Fermi level; hydrothermal methods; mid-gap state; photocatalytic activity; ANATASE TIO2 NANOPARTICLES; SURFACE; NANOCRYSTALS; REACTIVITY; METALS;
D O I
10.1002/crat.201700153
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
TiO2/Na0.23TiO2 composite photocatalyst is prepared by a simple hydrothermal method. Na0.23TiO2 appears at the alkali concentration of 1.2m, 320 degrees C, and 80min. Different morphologies are obtained under different experimental conditionsnamely, nanosheets, nanowire, and nanorod. The photocatalytic activity of TiO2/Na0.23TiO2 composites is superior to the raw anatase titanium dioxide (TiO2) for the degradation of methylene blue under UV-visible light irradiation. The best photocatalytic performance is achieved in a composite prepared at an alkali concentration of 1.5m. The photogenerated charge separation is a main factor in enhancing the activity of semiconductor-based photocatalysts. The calculated band gap of Na0.23TiO2 is about 2.904eV. The Fermi level lies in the conduction band in Na0.23TiO2 while it is near the valence band in anatase TiO2. Then, a heterojunction is formed and is helpful for the photogenerated electron-hole pairs separation, resulting in an enhanced photocatalysis.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [31] Correlation between band alignment and enhanced photocatalysis: a case study with anatase/TiO2(B) nanotube heterojunction
    Wang, Changhua
    Zhang, Xintong
    Wei, Yongan
    Kong, Lina
    Chang, Feng
    Zheng, Han
    Wu, Liangzhuan
    Zhi, Jinfang
    Liu, Yichun
    DALTON TRANSACTIONS, 2015, 44 (29) : 13331 - 13339
  • [32] La and/or Y doped TiO2: Facile Synthesis and Enhanced Photocatalysis
    Gao, Hongtao
    Liu, Wenchao
    ADVANCED MATERIALS RESEARCH II, PTS 1 AND 2, 2012, 463-464 : 290 - +
  • [33] Near-UV plasmon resonances for enhanced TiO2 photocatalysis
    Honda, Mitsuhiro
    Hizumi, Kohki
    Devi, Rajkumari Irena
    Tiwari, Nishtha
    Saito, Yuika
    Ichikawa, Yo
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (04)
  • [34] Mesoporous and phase pure anatase TiO2 nanospheres for enhanced photocatalysis
    Lavudya, Praveen
    Pant, Harita
    Srikanth, Vadali V. S. S.
    Ammanabrolu, Rajanikanth
    INORGANIC CHEMISTRY COMMUNICATIONS, 2023, 152
  • [35] Mechanism of enhanced photocatalysis of TiO2 by Fe3+ in suspensions
    Zhang, Junwei
    Fu, Dafang
    Gao, Haiying
    Deng, Lin
    APPLIED SURFACE SCIENCE, 2011, 258 (04) : 1294 - 1299
  • [36] Controllable synthesis of CuS decorated TiO2 nanofibers for enhanced photocatalysis
    Hou, Guohui
    Cheng, Zhiqiang
    Kang, Lijuan
    Xu, Xiaojuan
    Zhang, Fanli
    Yang, Hongjia
    CRYSTENGCOMM, 2015, 17 (29): : 5496 - 5501
  • [37] Study on the Enhanced Mechanism of TiO2 Photocatalysis by Fe3+
    Zhang, Junwei
    Fu, Dafang
    Yang, Xiaoli
    Deng, Lin
    2011 INTERNATIONAL CONFERENCE ON ENVIRONMENTAL TECHNOLOGY AND MANAGEMENT (ETM 2011), 2011, : 151 - 155
  • [38] Constructing Ru/TiO2 Heteronanostructures Toward Enhanced Photocatalytic Water Splitting via a RuO2/TiO2 Heterojunction and Ru/TiO2 Schottky Junction
    Gu, Quan
    Gao, Ziwei
    Yu, Sijia
    Xue, Can
    ADVANCED MATERIALS INTERFACES, 2016, 3 (04):
  • [39] Degradation of thiamethoxam in water by the synergy effect between the plasma discharge and the TiO2 photocatalysis
    Li, Shanping
    Cao, Xiaohong
    Liu, Lijun
    Ma, Xiaolong
    DESALINATION AND WATER TREATMENT, 2015, 53 (11) : 3018 - 3025
  • [40] Photocatalysis of SiO2-loaded TiO2
    Arai, Y
    Tanaka, K
    Khlaifat, AL
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2006, 243 (01) : 85 - 88