Synergy of TiO2/Na0.23TiO2 Heterojunction for Enhanced Photocatalysis

被引:8
|
作者
Wang, Jing-Zhou [1 ,2 ]
Zhou, Jian-Ping [1 ]
Guo, Ze-Qing [1 ]
Lei, Yu-Xi [1 ]
Ul Hassan, Qadeer [1 ]
机构
[1] Shaanxi Normal Univ, Sch Phys & Informat Technol, Xian 710119, Shaanxi, Peoples R China
[2] Ordos Inst Technol, Ordos 017000, Peoples R China
基金
中国国家自然科学基金;
关键词
band gap; Fermi level; hydrothermal methods; mid-gap state; photocatalytic activity; ANATASE TIO2 NANOPARTICLES; SURFACE; NANOCRYSTALS; REACTIVITY; METALS;
D O I
10.1002/crat.201700153
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
TiO2/Na0.23TiO2 composite photocatalyst is prepared by a simple hydrothermal method. Na0.23TiO2 appears at the alkali concentration of 1.2m, 320 degrees C, and 80min. Different morphologies are obtained under different experimental conditionsnamely, nanosheets, nanowire, and nanorod. The photocatalytic activity of TiO2/Na0.23TiO2 composites is superior to the raw anatase titanium dioxide (TiO2) for the degradation of methylene blue under UV-visible light irradiation. The best photocatalytic performance is achieved in a composite prepared at an alkali concentration of 1.5m. The photogenerated charge separation is a main factor in enhancing the activity of semiconductor-based photocatalysts. The calculated band gap of Na0.23TiO2 is about 2.904eV. The Fermi level lies in the conduction band in Na0.23TiO2 while it is near the valence band in anatase TiO2. Then, a heterojunction is formed and is helpful for the photogenerated electron-hole pairs separation, resulting in an enhanced photocatalysis.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] The development of high-performance room temperature NOX one-dimensional Na0.23TiO2/TiO2 compound gas sensor
    He, HaiLiu
    Liu, Jiongjiang
    Liu, Hongda
    Pan, Qingjiang
    Zhang, Guo
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 648
  • [2] Two-step hydrothermal fabrication of Na0.23TiO2 nanofibers and enhanced photocatalysis after loaded with gold or silver determined by surface potentials
    Wang, Jing-Zhou
    Chen, Qi-Wen
    Zhou, Jian-Ping
    Lei, Yu-Xi
    Menke, Neimule
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (09) : 4062 - 4073
  • [3] TiO2 Nanomaterials for Enhanced Photocatalysis
    Peng, Tao
    Lalman, Jerald A.
    [J]. CATALYSIS BY METAL COMPLEXES AND NANOMATERIALS: FUNDAMENTALS AND APPLICATIONS, 2019, 1317 : 135 - 165
  • [4] Anatase/Bronze TiO2 Heterojunction: Enhanced Photocatalysis and Prospect in Photothermal Catalysis
    Wang, Changhua
    Zhang, Xintong
    [J]. CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (06) : 992 - 999
  • [5] Anatase/Bronze TiO2 Heterojunction: Enhanced Photocatalysis and Prospect in Photothermal Catalysis
    Changhua Wang
    Xintong Zhang
    [J]. Chemical Research in Chinese Universities, 2020, 36 : 992 - 999
  • [6] Enhanced photocatalysis of TiO2 by aluminum plasmonic
    Zhang, Tingsong
    Xu, Mingze
    Li, Jinhua
    [J]. CATALYSIS TODAY, 2021, 376 : 162 - 167
  • [7] Degradation characteristics of NO by photocatalysis with TiO2 and CuO/TiO2
    Lim, TH
    Jeong, SM
    Kim, SD
    Gyenis, J
    [J]. REACTION KINETICS AND CATALYSIS LETTERS, 2000, 71 (02): : 223 - 229
  • [8] Degradation Characteristics of NO by Photocatalysis with TiO2 and CuO/TiO2
    Tak-Hyoung Lim
    Sang-Mun Jeong
    Sang-Done Kim
    János Gyenis
    [J]. Reaction Kinetics and Catalysis Letters, 2000, 71 : 223 - 229
  • [9] A novel CuSbS2–TiO2 nanoparticles synergy structure for photocatalysis
    Guowei Zhi
    Wei Wang
    Ming Zhang
    Lingyun Hao
    Lu Yang
    Jijinhua Liu
    Yijie Zhao
    [J]. Journal of Materials Science: Materials in Electronics, 2020, 31 : 17036 - 17043
  • [10] Enhanced photocatalysis on TiO2 nanotube arrays modified with molecularly imprinted TiO2 thin film
    Liu, Yutang
    Liu, Ronghua
    Liu, Chengbin
    Luo, Shenglian
    Yang, Lixia
    Sui, Fan
    Teng, Yarong
    Yang, Renbin
    Cai, Qingyun
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2010, 182 (1-3) : 912 - 918