Compositions of nanoparticles of cubic symmetry

被引:6
|
作者
Kustov, E. F.
Nefedov, V. I.
Karelina, M. S.
Shul'gina, E. V.
Chernova, G. S.
机构
[1] Tech Univ, Moscow Power Engn Inst, Moscow 111250, Russia
[2] Russian Acad Sci, Kurnakov Inst Gen & Inorgan Chem, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S0036023606110167
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The formulas for calculation of the number of particles in structures of cubic symmetry O (h) are reported. The numbers of atoms in the shells of cubic symmetry are determined by four structurally invariant numbers and the "quantum number" of the order n of the group. The classification of the shells of cubic symmetry is presented, and eight classes of shells are revealed. A key role in this classification is played by basic shells; in the case of close-packed spheres, these basic shells are repeated every six layers. The sum of all coordination numbers of all atoms of subshells is 24. The possibility of the existence of new fullerenes and nanoparticles of elemental boron and its oxides is considered.
引用
收藏
页码:1795 / 1804
页数:10
相关论文
共 50 条
  • [31] Mesostructured germanium with cubic pore symmetry
    Armatas, Gerasimos S.
    Kanatzidis, Mercouri G.
    NATURE, 2006, 441 (7097) : 1122 - 1125
  • [32] Symmetry of generic bifurcations in cubic domains
    Gomes, MGM
    Stewart, I
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (01): : 147 - 171
  • [33] Symmetry of Generic Bifurcations in Cubic Domains
    Gomes, M. G. M.
    Stewart, I.
    International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 7 (01):
  • [34] Mesostructured germanium with cubic pore symmetry
    Gerasimos S. Armatas
    Mercouri G. Kanatzidis
    Nature, 2006, 441 : 1122 - 1125
  • [35] MAGNETIC SYMMETRY IN SEVERAL CUBIC COMPOUNDS
    LUCHIAN, H
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1983, 118 (01): : 31 - 39
  • [36] Scissors Modes in crystals with cubic symmetry
    K. Hatada
    K. Hayakawa
    F. Palumbo
    The European Physical Journal B, 2010, 77 : 41 - 45
  • [37] INTERNAL SYMMETRY GROUPS OF CUBIC ALGEBRAS
    Kerner, Richard
    Suzuki, Osamu
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (06)
  • [38] Theory of ferromagnetism for metals of cubic symmetry
    R. O. Zaitsev
    Journal of Experimental and Theoretical Physics Letters, 2000, 72 : 77 - 81
  • [39] ACOUSTIC ACTIVITY IN CRYSTALS OF CUBIC SYMMETRY
    VUZHVA, AD
    SOVIET PHYSICS ACOUSTICS-USSR, 1983, 29 (04): : 336 - 336
  • [40] INTERPENETRATING SPHERE PACKING WITH CUBIC SYMMETRY
    FISCHER, W
    KOCH, E
    ACTA CRYSTALLOGRAPHICA SECTION A, 1976, 32 (MAR1): : 225 - 232